1
|
Nabi Khan RI, Praharaj MR, Malla WA, Hosamani N, Saxena S, Mishra B, Rajak KK, Dhanavelu M, Tiwari AK, Sajjanar B, Gandham RK, Mishra B. Changes in m 6A RNA methylation of goat lung following PPRV infection. Heliyon 2023; 9:e19358. [PMID: 37681172 PMCID: PMC10480600 DOI: 10.1016/j.heliyon.2023.e19358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Peste des petits ruminants (PPR) is an acute, highly contagious viral disease of goats and sheep, caused by the Peste des petits ruminants virus (PPRV). Earlier studies suggest the involvement of diverse regulatory mechanisms in PPRV infection. Methylation at N6 of Adenosine called m6A is a type RNA modification that influences various physiological and pathological phenomena. As the lung tissue represents the primary target organ of PPRV, the present study explored the m6A changes and their functional significance in PPRV disease pathogenesis. m6A-seq analysis revealed 1289 m6A peaks to be significantly altered in PPRV infected lung in comparison to normal lung, out of which 975 m6A peaks were hypomethylated and 314 peaks were hypermethylated. Importantly, hypomethylated genes were enriched in Interleukin-4 and Interleukin-13 signaling and various processes associated with extracellular matrix organization. Further, of the 843 differentially m6A-containing cellular transcripts, 282 transcripts were also found to be differentially expressed. Functional analysis revealed that these 282 transcripts are significantly enriched in signaling by Interleukins, extracellular matrix organization, cytokine signaling in the immune system, signaling by receptor tyrosine kinases, and Toll-like Receptor Cascades. We also found m6A reader HNRNPC and the core component of methyltransferase complex METTL14 to be highly upregulated than the m6A readers - HNRNPA2B1 and YTHDF1 at the transcriptome level. These findings suggest that alteration in the m6A landscape following PPRV is implicated in diverse processes including Interleukin signaling.
Collapse
Affiliation(s)
- Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- Center for Advanced Biotechnology and Medicine, Rutgers University, 08854-8021, New Jersey, USA
| | - Manas Ranjan Praharaj
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Neelima Hosamani
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Bina Mishra
- Division of Biological Products, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | | | - Ashok Kumar Tiwari
- ICAR – Central Avian Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Basavaraj Sajjanar
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - B.P. Mishra
- Division of Veterinary Biotechnology, ICAR – Indian Veterinary Research Institute, Izatnagar Bareilly, 243122, U.P., India
- ICAR – National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| |
Collapse
|
2
|
Milovanović M, Dietze K, Wernery U, Hoffmann B. Investigation of Potency and Safety of Live-Attenuated Peste des Petits Ruminant Virus Vaccine in Goats by Detection of Cellular and Humoral Immune Response. Viruses 2023; 15:1325. [PMID: 37376624 DOI: 10.3390/v15061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The peste des petits ruminant (PPR) virus is a transboundary virus found in small domestic ruminants that causes high morbidity and mortality in naive herds. PPR can be effectively controlled and eradicated by vaccinating small domestic ruminants with a live-attenuated peste des petits ruminant virus (PPRV) vaccine, which provides long-lasting immunity. We studied the potency and safety of a live-attenuated vaccine in goats by detecting their cellular and humoral immune responses. Six goats were subcutaneously vaccinated with a live-attenuated PPRV vaccine according to the manufacturer's instructions, and two goats were kept in contact. Following vaccination, the goats were monitored daily, and we recorded their body temperature and clinical score. Heparinized blood and serum were collected for a serological analysis, and swab samples and EDTA blood were collected to detect the PPRV genome. The safety of the used PPRV vaccine was confirmed by the absence of PPR-related clinical signs, a negative pen-side test, a low virus genome load as detected with RT-qPCR on the vaccinated goats, and the lack horizontal transmission between the in-contact goats. The strong humoral and cellular immune responses detected in the vaccinated goats showed that the live-attenuated PPRV vaccine has a strong potency in goats. Therefore, live-attenuated vaccines against PPR can be used to control and eradicate PRR.
Collapse
Affiliation(s)
- Milovan Milovanović
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Klaas Dietze
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
A Morbillivirus Infection Shifts DC Maturation Toward a Tolerogenic Phenotype to Suppress T Cell Activation. J Virol 2022; 96:e0124022. [PMID: 36094317 PMCID: PMC9517701 DOI: 10.1128/jvi.01240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses have evolved numerous strategies to impair immunity so that they can replicate more efficiently. Among those, the immunosuppressive effects of morbillivirus infection can be particularly problematic, as they allow secondary infections to take hold in the host, worsening disease prognosis. In the present work, we hypothesized that the highly contagious morbillivirus peste des petits ruminants virus (PPRV) could target monocytes and dendritic cells (DC) to contribute to the immunosuppressive effects produced by the infection. Monocytes isolated from healthy sheep, a natural host of the disease, were able be infected by PPRV and this impaired the differentiation and phagocytic ability of immature monocyte-derived DC (MoDC). We also assessed PPRV capacity to infect differentiated MoDC. Ovine MoDC could be productively infected by PPRV, and this drastically reduced MoDC capacity to activate allogeneic T cell responses. Transcriptomic analysis of infected MoDC indicated that several tolerogenic DC signature genes were upregulated upon PPRV infection. Furthermore, PPRV-infected MoDC could impair the proliferative response of autologous CD4+ and CD8+ T cell to the mitogen concanavalin A (ConA), which indicated that DC targeting by the virus could promote immunosuppression. These results shed new light on the mechanisms employed by morbillivirus to suppress the host immune responses. IMPORTANCE Morbilliviruses pose a threat to global health given their high infectivity. The morbillivirus peste des petits ruminants virus (PPRV) severely affects small-ruminant-productivity and leads to important economic losses in communities that rely on these animals for subsistence. PPRV produces in the infected host a period of severe immunosuppression that opportunistic pathogens exploit, which worsens the course of the infection. The mechanisms of PPRV immunosuppression are not fully understood. In the present work, we demonstrate that PPRV can infect professional antigen-presenting cells called dendritic cells (DC) and disrupt their capacity to elicit an immune response. PPRV infection promoted a DC activation profile that favored the induction of tolerance instead of the activation of an antiviral immune response. These results shed new light on the mechanisms employed by morbilliviruses to suppress the immune responses.
Collapse
|
4
|
The Sheep as a Large Animal Model for the Investigation and Treatment of Human Disorders. BIOLOGY 2022; 11:biology11091251. [PMID: 36138730 PMCID: PMC9495394 DOI: 10.3390/biology11091251] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary We review the value of large animal models for improving the translation of biomedical research for human application, focusing primarily on sheep. Abstract An essential aim of biomedical research is to translate basic science information obtained from preclinical research using small and large animal models into clinical practice for the benefit of humans. Research on rodent models has enhanced our understanding of complex pathophysiology, thus providing potential translational pathways. However, the success of translating drugs from pre-clinical to clinical therapy has been poor, partly due to the choice of experimental model. The sheep model, in particular, is being increasingly applied to the field of biomedical research and is arguably one of the most influential models of human organ systems. It has provided essential tools and insights into cardiovascular disorder, orthopaedic examination, reproduction, gene therapy, and new insights into neurodegenerative research. Unlike the widely adopted rodent model, the use of the sheep model has an advantage over improving neuroscientific translation, in particular due to its large body size, gyrencephalic brain, long lifespan, more extended gestation period, and similarities in neuroanatomical structures to humans. This review aims to summarise the current status of sheep to model various human diseases and enable researchers to make informed decisions when considering sheep as a human biomedical model.
Collapse
|
5
|
Wani SA, Sahu AR, Khan RIN, Praharaj MR, Saxena S, Rajak KK, Muthuchelvan D, Sahoo A, Mishra B, Singh RK, Mishra BP, Gandham RK. Proteome Modulation in Peripheral Blood Mononuclear Cells of Peste des Petits Ruminants Vaccinated Goats and Sheep. Front Vet Sci 2021; 8:670968. [PMID: 34631844 PMCID: PMC8493254 DOI: 10.3389/fvets.2021.670968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
In the present study, healthy goats and sheep (n = 5) that were confirmed negative for peste des petits ruminants virus (PPRV) antibodies by monoclonal antibody-based competitive ELISA and by serum neutralization test and for PPRV antigen by s-ELISA were vaccinated with Sungri/96. A quantitative study was carried out to compare the proteome of peripheral blood mononuclear cells (PBMCs) of vaccinated goat and sheep [5 days post-vaccination (dpv) and 14 dpv] vs. unvaccinated (0 day) to divulge the alteration in protein expression following vaccination. A total of 232 and 915 proteins were differentially expressed at 5 and 14 dpv, respectively, in goats. Similarly, 167 and 207 proteins were differentially expressed at 5 and 14 dpv, respectively, in sheep. Network generated by Ingenuity Pathway Analysis was “infectious diseases, antimicrobial response, and inflammatory response,” which includes the highest number of focus molecules. The bio functions, cell-mediated immune response, and humoral immune response were highly enriched in goats at 5 dpv and at 14 dpv. At the molecular level, the immune response produced by the PPRV vaccine virus in goats is effectively coordinated and stronger than that in sheep, though the vaccine provides protection from virulent virus challenge in both. The altered expression of certain PBMC proteins especially ISG15 and IRF7 induces marked changes in cellular signaling pathways to coordinate host immune responses.
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India.,College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, United States
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Manas Ranjan Praharaj
- Systems Biology Lab, Department of Biotechnology -National Institute of Animal Biotechnology, Hyderabad, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Dhanavelu Muthuchelvan
- Division of Virology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Mukteswar, India
| | - Aditya Sahoo
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Bina Mishra
- Division of Biological Products, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - R K Singh
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India.,Systems Biology Lab, Department of Biotechnology -National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|