1
|
Kopejtka K, Tomasch J, Shivaramu S, Saini MK, Kaftan D, Koblížek M. Minimal transcriptional regulation of horizontally transferred photosynthesis genes in phototrophic bacterium Gemmatimonas phototrophica. mSystems 2024; 9:e0070624. [PMID: 39189770 PMCID: PMC11406998 DOI: 10.1128/msystems.00706-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
The first phototrophic member of the bacterial phylum Gemmatimonadota, Gemmatimonas phototrophica AP64T, received all its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Here, we investigated how these acquired genes, which are tightly controlled by oxygen and light in the ancestor, are integrated into the regulatory system of its new host. G. phototrophica grew well under aerobic and semiaerobic conditions, with almost no difference in gene expression. Under aerobic conditions, the growth of G. phototrophica was optimal at 80 µmol photon m-2 s-1, while higher light intensities had an inhibitory effect. The transcriptome showed only a minimal response to the dark-light shift at optimal light intensity, while the exposure to a higher light intensity (200 µmol photon m-2 s-1) induced already stronger but still transient changes in gene expression. Interestingly, a singlet oxygen defense was not activated under any conditions tested. Our results indicate that G. phototrophica possesses neither the oxygen-dependent repression of photosynthesis genes known from purple bacteria nor the light-dependent repression described in aerobic anoxygenic phototrophs. Instead, G. phototrophica has evolved as a low-light species preferring reduced oxygen concentrations. Under these conditions, the bacterium can safely employ its photoheterotrophic metabolism without the need for complex regulatory mechanisms. IMPORTANCE Horizontal gene transfer is one of the main mechanisms by which bacteria acquire new genes. However, it represents only the first step as the transferred genes have also to be functionally and regulatory integrated into the recipient's cellular machinery. Gemmatimonas phototrophica, a member of bacterial phylum Gemmatimonadota, acquired its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Thus, it represents a unique natural experiment, in which the entire package of photosynthesis genes was transplanted into a distant host. We show that G. phototrophica lacks the regulation of photosynthesis gene expressions in response to oxygen concentration and light intensity that are common in purple bacteria. This restricts its growth to low-light habitats with reduced oxygen. Understanding the regulation of horizontally transferred genes is important not only for microbial evolution but also for synthetic biology and the engineering of novel organisms, as these rely on the successful integration of foreign genes.
Collapse
Affiliation(s)
- Karel Kopejtka
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Sahana Shivaramu
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Mohit Kumar Saini
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - David Kaftan
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň, Czechia
| |
Collapse
|
2
|
Carvalho VCF, Gan AZM, Shon A, Kolakovic S, Freitas EB, Reis MAM, Fradinho JC, Oehmen A. The phototrophic metabolic behaviour of Candidatus accumulibacter. WATER RESEARCH 2024; 259:121865. [PMID: 38851111 DOI: 10.1016/j.watres.2024.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The phototrophic capability of Candidatus Accumulibacter (Accumulibacter), a common polyphosphate accumulating organism (PAO) in enhanced biological phosphorus removal (EBPR) systems, was investigated in this study. Accumulibacter is phylogenetically related to the purple bacteria Rhodocyclus from the family Rhodocyclaceae, which belongs to the class Betaproteobacteria. Rhodocyclus typically exhibits both chemoheterotrophic and phototrophic growth, however, limited studies have evaluated the phototrophic potential of Accumulibacter. To address this gap, short and extended light cycle tests were conducted using a highly enriched Accumulibacter culture (95%) to evaluate its responses to illumination. Results showed that, after an initial period of adaptation to light conditions (approximately 4-5 h), Accumulibacter exhibited complete phosphorus (P) uptake by utilising polyhydroxyalkanoates (PHA), and additionally by consuming glycogen, which contrasted with its typical aerobic metabolism. Mass, energy, and redox balance analyses demonstrated that Accumulibacter needed to employ phototrophic metabolism to meet its energy requirements. Calculations revealed that the light reactions contributed to the generation of, at least more than 67% of the ATP necessary for P uptake and growth. Extended light tests, spanning 21 days with dark/light cycles, suggested that Accumulibacter generated ATP through light during initial operation, however, it likely reverted to conventional anaerobic/aerobic metabolism under dark/light conditions due to microalgal growth in the mixed culture, contributing to oxygen production. In contrast, extended light tests with an enriched Tetrasphaera culture, lacking phototrophic genes in its genome, clearly demonstrated that phototrophic P uptake did not occur. These findings highlight the adaptive metabolic capabilities of Accumulibacter, enabling it to utilise phototrophic pathways for energy generation during oxygen deprivation, which holds the potential to advance phototrophic-EBPR technology development.
Collapse
Affiliation(s)
- V C F Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - A Z M Gan
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - A Shon
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - S Kolakovic
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - E B Freitas
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - M A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - J C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - A Oehmen
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Piwosz K, Villena-Alemany C, Całkiewicz J, Mujakić I, Náhlík V, Dean J, Koblížek M. Response of aerobic anoxygenic phototrophic bacteria to limitation and availability of organic carbon. FEMS Microbiol Ecol 2024; 100:fiae090. [PMID: 38886127 PMCID: PMC11229431 DOI: 10.1093/femsec/fiae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are an important component of freshwater bacterioplankton. They can support their heterotrophic metabolism with energy from light, enhancing their growth efficiency. Based on results from cultures, it was hypothesized that photoheterotrophy provides an advantage under carbon limitation and facilitates access to recalcitrant or low-energy carbon sources. However, verification of these hypotheses for natural AAP communities has been lacking. Here, we conducted whole community manipulation experiments and compared the growth of AAP bacteria under carbon limited and with recalcitrant or low-energy carbon sources under dark and light (near-infrared light, λ > 800 nm) conditions to elucidate how they profit from photoheterotrophy. We found that AAP bacteria induce photoheterotrophic metabolism under carbon limitation, but they overcompete heterotrophic bacteria when carbon is available. This effect seems to be driven by physiological responses rather than changes at the community level. Interestingly, recalcitrant (lignin) or low-energy (acetate) carbon sources inhibited the growth of AAP bacteria, especially in light. This unexpected observation may have ecosystem-level consequences as lake browning continues. In general, our findings contribute to the understanding of the dynamics of AAP bacteria in pelagic environments.
Collapse
Affiliation(s)
- Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
| | - Joanna Całkiewicz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
| | - Vít Náhlík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, 389 25 České Budějovice, Czechia
| | - Jason Dean
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, 379 01 Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| |
Collapse
|
4
|
Tomasch J, Kopejtka K, Bílý T, Gardiner AT, Gardian Z, Shivaramu S, Koblížek M, Kaftan D. A photoheterotrophic bacterium from Iceland has adapted its photosynthetic machinery to the long days of polar summer. mSystems 2024; 9:e0131123. [PMID: 38376261 PMCID: PMC10949492 DOI: 10.1128/msystems.01311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
During their long evolution, anoxygenic phototrophic bacteria have inhabited a wide variety of natural habitats and developed specific strategies to cope with the challenges of any particular environment. Expression, assembly, and safe operation of the photosynthetic apparatus must be regulated to prevent reactive oxygen species generation under illumination in the presence of oxygen. Here, we report on the photoheterotrophic Sediminicoccus sp. strain KRV36, which was isolated from a cold stream in north-western Iceland, 30 km south of the Arctic Circle. In contrast to most aerobic anoxygenic phototrophs, which stop pigment synthesis when illuminated, strain KRV36 maintained its bacteriochlorophyll synthesis even under continuous light. Its cells also contained between 100 and 180 chromatophores, each accommodating photosynthetic complexes that exhibit an unusually large carotenoid absorption spectrum. The expression of photosynthesis genes in dark-adapted cells was transiently downregulated in the first 2 hours exposed to light but recovered to the initial level within 24 hours. An excess of membrane-bound carotenoids as well as high, constitutive expression of oxidative stress response genes provided the required potential for scavenging reactive oxygen species, safeguarding bacteriochlorophyll synthesis and photosystem assembly. The unique cellular architecture and an unusual gene expression pattern represent a specific adaptation that allows the maintenance of anoxygenic phototrophy under arctic conditions characterized by long summer days with relatively low irradiance.IMPORTANCEThe photoheterotrophic bacterium Sediminicoccus sp. KRV36 was isolated from a cold stream in Iceland. It expresses its photosynthesis genes, synthesizes bacteriochlorophyll, and assembles functional photosynthetic complexes under continuous light in the presence of oxygen. Unraveling the molecular basis of this ability, which is exceptional among aerobic anoxygenic phototrophic species, will help to understand the evolution of bacterial photosynthesis in response to changing environmental conditions. It might also open new possibilities for genetic engineering of biotechnologically relevant phototrophs, with the aim of increasing photosynthetic activity and their tolerance to reactive oxygen species.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Karel Kopejtka
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Tomáš Bílý
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Alastair T. Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Zdenko Gardian
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Sahana Shivaramu
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - David Kaftan
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
5
|
Phukon H, Harshvardhan K, Sarma N, Kumar P, Lal M, Kalita D. Isolation and identification of Methylobacterium komagatae and its application in textile industries. Nat Prod Res 2024:1-11. [PMID: 38389289 DOI: 10.1080/14786419.2024.2318787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
A light pink-coloured, rod-shaped, gram-negative bacterium isolated from an unproductive crude oil production area was considered as a sample for this study. The 16S rRNA gene sequence identified the isolate as Methylobacterium komagatae. Comparing the standard colour measurement values set by the International Commission on Illumination (CIE) method confirms the colourant produced by the biomass of this microorganism as a 'light pink' colouration. The energy-dispersive X-ray spectroscopy and High-Resolution Mass Spectroscopy process help in the structural elucidation of the sample. It indicates the presence of magnesium (Mg) as a central metal atom in the bacterial colourant, i.e. 'bacteriochlorophyll' (BChl) (MgC55H74N4O). The recovered bacterial colourant was applied to cotton fabric and cotton yarns to dye and examine their fastness quality. The result shows the cotton fabrics retained colourant in normal washing while it got reduced after detergent-based washing. Therefore, its fastness quality must be improved to equalise with current colourants.
Collapse
Affiliation(s)
- Hridoyjit Phukon
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Agro-technology and Rural Development Division (ARDD), North East Institute of Science and Technology, Jorhat, Assam, India
| | - Kumar Harshvardhan
- Agro-technology and Rural Development Division (ARDD), North East Institute of Science and Technology, Jorhat, Assam, India
| | - Neelav Sarma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Agro-technology and Rural Development Division (ARDD), North East Institute of Science and Technology, Jorhat, Assam, India
| | - Pankaj Kumar
- Department of Botany and Microbiology, Hemwati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Mohan Lal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Agro-technology and Rural Development Division (ARDD), North East Institute of Science and Technology, Jorhat, Assam, India
| | - Dipul Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Agro-technology and Rural Development Division (ARDD), North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
6
|
Kuzyk SB, Messner K, Plouffe J, Ma X, Wiens K, Yurkov V. Diverse aerobic anoxygenic phototrophs synthesize bacteriochlorophyll in oligotrophic rather than copiotrophic conditions, suggesting ecological niche. Environ Microbiol 2023; 25:2653-2665. [PMID: 37604501 DOI: 10.1111/1462-2920.16482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
While investigating aerobic anoxygenic phototrophs (AAP) from Lake Winnipeg's bacterial community, over 500 isolates were obtained. Relatives of 20 different species were examined simultaneously, identifying conditions for optimal growth or pigment production to determine features that may unify this group of phototrophs. All were distributed among assorted α-Proteobacterial families including Erythrobacteraceae, Sphingomonadaceae, Sphingosinicellaceae, Acetobacteraceae, Methylobacteriaceae, and Rhodobacteraceae. Major phenotypic characteristics matched phylogenetic association, including pigmentation, morphology, metal transformations, tolerances, lipid configurations, and enzyme activities, which distinctly separated each taxonomic family. While varying pH and temperature had a limited independent impact on pigment production, bacteriochlorophyll synthesis was distinctly promoted under low nutrient conditions, whereas copiotrophy repressed its production but enhanced carotenoid yield. New AAP diversity was also reported by revealing strains related to non-phototrophic Rubellimicrobium and Sphingorhabdus, as well as spread throughout Roseomonas, Sphingomonas, and Methylobacterium/Methylorubrum, which previously only had a few known photosynthetic members. This study exemplified the overwhelming diversity of AAP in a single aquatic environment, confirming cultivation continues to be of importance in microbial ecology to discover functionality in both new and previously reported cohorts of bacteria as specific laboratory conditions were required to promote aerobic bacteriochlorophyll production.
Collapse
Affiliation(s)
- Steven B Kuzyk
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Katia Messner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jocelyn Plouffe
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiao Ma
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kaitlyn Wiens
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Amato P, Mathonat F, Nuñez Lopez L, Péguilhan R, Bourhane Z, Rossi F, Vyskocil J, Joly M, Ervens B. The aeromicrobiome: the selective and dynamic outer-layer of the Earth's microbiome. Front Microbiol 2023; 14:1186847. [PMID: 37260685 PMCID: PMC10227452 DOI: 10.3389/fmicb.2023.1186847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The atmosphere is an integral component of the Earth's microbiome. Abundance, viability, and diversity of microorganisms circulating in the air are determined by various factors including environmental physical variables and intrinsic and biological properties of microbes, all ranging over large scales. The aeromicrobiome is thus poorly understood and difficult to predict due to the high heterogeneity of the airborne microorganisms and their properties, spatially and temporally. The atmosphere acts as a highly selective dispersion means on large scales for microbial cells, exposing them to a multitude of physical and chemical atmospheric processes. We provide here a brief critical review of the current knowledge and propose future research directions aiming at improving our comprehension of the atmosphere as a biome.
Collapse
Affiliation(s)
- Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zeng Y. Bacterial dual phototrophy was demystified. Trends Microbiol 2023; 31:326-328. [PMID: 36822951 DOI: 10.1016/j.tim.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Despite solid, growing genomic evidence for bacteria practicing bacteriochlorophyll and rhodopsin-based dual phototrophy, direct physiological proof has been lacking for over a decade until Kopejtka et al. recently solved the puzzle in an Alpine psychrophilic bacterium. Here, I highlight conceptual developments and address an overlooked, ecologically important phototrophic byproduct - heat.
Collapse
Affiliation(s)
- Yonghui Zeng
- Department of Plant and Environmental Sciences, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
10
|
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica. Microorganisms 2022; 11:microorganisms11010027. [PMID: 36677319 PMCID: PMC9862903 DOI: 10.3390/microorganisms11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.
Collapse
|
11
|
Núñez-Montero K, Rojas-Villalta D, Barrientos L. Antarctic Sphingomonas sp. So64.6b showed evolutive divergence within its genus, including new biosynthetic gene clusters. Front Microbiol 2022; 13:1007225. [DOI: 10.3389/fmicb.2022.1007225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
IntroductionThe antibiotic crisis is a major human health problem. Bioprospecting screenings suggest that proteobacteria and other extremophile microorganisms have biosynthetic potential for the production novel antimicrobial compounds. An Antarctic Sphingomonas strain (So64.6b) previously showed interesting antibiotic activity and elicitation response, then a relationship between environmental adaptations and its biosynthetic potential was hypothesized. We aimed to determine the genomic characteristics in So64.6b strain related to evolutive traits for the adaptation to the Antarctic environment that could lead to its diversity of potentially novel antibiotic metabolites.MethodsThe complete genome sequence of the Antarctic strain was obtained and mined for Biosynthetic Gene Clusters (BGCs) and other unique genes related to adaptation to extreme environments. Comparative genome analysis based on multi-locus phylogenomics, BGC phylogeny, and pangenomics were conducted within the closest genus, aiming to determine the taxonomic affiliation and differential characteristics of the Antarctic strain.Results and discussionThe Antarctic strain So64.6b showed a closest identity with Sphingomonas alpina, however containing a significant genomic difference of ortholog cluster related to degradation multiple pollutants. Strain So64.6b had a total of six BGC, which were predicted with low to no similarity with other reported clusters; three were associated with potential novel antibiotic compounds using ARTS tool. Phylogenetic and synteny analysis of a common BGC showed great diversity between Sphingomonas genus but grouping in clades according to similar isolation environments, suggesting an evolution of BGCs that could be linked to the specific ecosystems. Comparative genomic analysis also showed that Sphingomonas species isolated from extreme environments had the greatest number of predicted BGCs and a higher percentage of genetic content devoted to BGCs than the isolates from mesophilic environments. In addition, some extreme-exclusive clusters were found related to oxidative and thermal stress adaptations, while pangenome analysis showed unique resistance genes on the Antarctic strain included in genetic islands. Altogether, our results showed the unique genetic content on Antarctic strain Sphingomonas sp. So64.6, −a probable new species of this genetically divergent genus–, which could have potentially novel antibiotic compounds acquired to cope with Antarctic poly-extreme conditions.
Collapse
|
12
|
Complete Genome of Sphingomonas aerolata PDD-32b-11, Isolated from Cloud Water at the Summit of Puy de Dôme, France. Microbiol Resour Announc 2022; 11:e0068422. [PMID: 36106890 PMCID: PMC9584328 DOI: 10.1128/mra.00684-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of
Sphingomonas aerolata
PDD-32b-11, a bacterium isolated from cloud water, was sequenced. It features four circular replicons, a chromosome of 3.99 Mbp, and three plasmids. Two putative rhodopsin-encoding genes were detected which might act as proton pumps to harvest light energy.
Collapse
|
13
|
Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5. Microorganisms 2021; 9:microorganisms9040768. [PMID: 33917603 PMCID: PMC8067484 DOI: 10.3390/microorganisms9040768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Tyrolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%). Its genomic DNA G + C content is 65.9%. Further, in silico DNA-DNA hybridization and calculation of the average nucleotide identity speaks for the close phylogenetic relationship of AAP5 and Sphingomonas glacialis. The high percentage (76.2%) of shared orthologous gene clusters between strain AAP5 and Sphingomonas paucimobilis NCTC 11030T, the type species of the genus, supports the classification of the two strains into the same genus. Strain AAP5 was found to contain C18:1ω7c (64.6%) as a predominant fatty acid (>10%) and the polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, six unidentified glycolipids, one unidentified phospholipid, and two unidentified lipids. The main respiratory quinone was ubiquinone-10. Strain AAP5 is a facultative photoheterotroph containing type-2 photosynthetic reaction centers and, in addition, contains a xathorhodopsin gene. No CO2-fixation pathways were found.
Collapse
|