1
|
Zhang S, Hou M, Li B, Guan P, Chi Q, Sun H, Xu H, Cui D, Zhu Y. Roles of core nosZ denitrifiers in enhancing denitrification activity under long-term rice straw retention. FRONTIERS IN PLANT SCIENCE 2025; 16:1541202. [PMID: 39990713 PMCID: PMC11842374 DOI: 10.3389/fpls.2025.1541202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025]
Abstract
The denitrification process is known to contribute to soil nitrogen (N) loss, which is strongly affected by fertilization strategies; however, the effects of distinct straw retention modes on soil denitrification activity have rarely been discriminated and the underlying mechanisms remain unclear. This study coupled field and incubation experiments to explore the characteristics of soil denitrification activity, soil and standing water physicochemical properties, and the abundance, community diversity, and co-occurrence network of nosZ denitrifiers, based on a paddy field implementing 10-year straw retention under a rice-wheat rotation system. Four straw retention treatments with equivalent chemical fertilizers were applied, namely no straw (NS), wheat straw only (WS), rice straw only (RS), and wheat and rice straw (WRS). Results indicated a significant increase (by 41.93-45.80% when compared to that with NS) in the soil denitrification activity with RS and WRS. Correspondingly, treatments with rice straw retention resulted in the development of a similar community composition (P < 0.05), structure (P = 0.001), and more positively interconnected network, as well as similar specific keystone taxa of nosZ denitrifiers, relative to those in non-rice straw mode. Under long-term rice straw retention conditions, the core nosZ-denitrifying phylogroups shifted (r = 0.83, P < 0.001), with the recruitment of keystone taxa from the phyla Bacteroidetes and Euryarchaeota playing a key role in enhancing denitrification activity and stimulating N loss. Accordingly, in a rice-wheat rotation field, the practice of wheat straw retention in a single season is recommended because it will not markedly sacrifice soil N availability impaired by the denitrification process.
Collapse
Affiliation(s)
- Shijie Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Mengyao Hou
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Bing Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Panfeng Guan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Qing Chi
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Hao Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Dongjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Yupan Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Baati H, Siala M, Benali S, Azri C, Dunlap C, Martínez-Espinosa RM, Trigui M. Elucidating metabolic pathways through genomic analysis in highly heavy metal-resistant Halobacterium salinarum strains. Heliyon 2024; 10:e40822. [PMID: 39717611 PMCID: PMC11665356 DOI: 10.1016/j.heliyon.2024.e40822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
The annotated and predicted genomes of five archaeal strains (AS1, AS2, AS8, AS11 and AS19), isolated from Sfax solar saltern sediments (Tunisia) and affiliated with Halobacterium salinarum, were performed by RAST webserver (Rapid Annotation using Subsystem Technology) and NCBI prokaryotic genome annotation pipeline (PGAP). The results showed the ability of strains to use a reduced semi-phosphorylative Entner-Doudoroff pathway for glucose degradation and an Embden-Meyerhof one for gluconeogenesis. They could use glucose, fructose, glycerol, and acetate as sole source of carbon and energy. ATP synthase, various cytochromes and aerobic respiration proteins were encoded. All strains showed fermentation capability through the arginine deiminase pathway and facultative anaerobic respiration using electron acceptors (Dimethyl sulfoxide and trimethylamine N-oxide). Several biosynthesis pathways for many amino acids were identified. Comparative and pangenome analyses between the strains and the well-studied halophilic archaea Halobacterium NRC-1 highlighted a notable dissimilarity. Besides, the strains shared a core genome of 1973 genes and an accessory genome of 767 genes. 129, 94, 67, 15 and 29 unique genes were detected in the AS1, AS2, AS8, AS11 and AS19 genomes, respectively. Most of these unique genes code for hypothetical proteins. The strains displayed plant-growth promoting characteristics under heavy metal stress (Ammonium assimilation, phosphate solubilization, chemotaxis, cell motility and production of indole acetic acid, siderophore and phenazine). Therefore, they could be used as a biofertilizer to promote plant growth. The genomes encoded numerous biotechnologically relevant genes responsible for vitamin biosynthesis, including cobalamin, folate, biotin, pantothenate, riboflavin, thiamine, menaquinone, nicotinate, and nicotinamide. The carotenogenetic pathway of the studied strains was also predicted. Consequently, the findings of this study contribute to a better understanding of the halophilic archaea metabolism providing valuable insights into their ecophysiology as well as relevant biotechnological applications.
Collapse
Affiliation(s)
- Houda Baati
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Mariem Siala
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Souad Benali
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Chafai Azri
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| | - Christopher Dunlap
- United States Department of Agriculture, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, 1815 North University St, Peoria, IL, 61604, USA
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Mohamed Trigui
- Research Laboratory of Environmental Sciences and Sustainable Development, LR18ES32, University of Sfax, Tunisia
| |
Collapse
|
3
|
Gutiérrez-Preciado A, Dede B, Baker BA, Eme L, Moreira D, López-García P. Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines. Nat Ecol Evol 2024; 8:1856-1869. [PMID: 39134651 DOI: 10.1038/s41559-024-02505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
Few described archaeal, and fewer bacterial, lineages thrive under salt-saturating conditions, such as solar saltern crystallizers (salinity above 30% w/v). They accumulate molar K+ cytoplasmic concentrations to maintain osmotic balance ('salt-in' strategy) and have proteins adaptively enriched in negatively charged acidic amino acids. Here we analysed metagenomes and metagenome-assembled genomes from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Danakil Depression. Normalized abundances of universal single-copy genes confirmed that haloarchaea and Nanohaloarchaeota encompass 99% of microbial communities in the near-life-limiting conditions of the Western-Canyon Lakes. Danakil metagenome- and metagenome-assembled-genome-inferred proteomes, compared with those of freshwater, seawater and solar saltern ponds up to saturation (6-14-32% salinity), showed that Western-Canyon Lake archaea encode the most acidic proteomes ever observed (median protein isoelectric points ≤4.4). We identified previously undescribed haloarchaeal families as well as an Aenigmatarchaeota family and a bacterial phylum independently adapted to extreme halophily. Despite phylum-level diversity decreasing with increasing salinity-chaotropicity, and unlike in solar salterns, adapted archaea exceedingly diversified in Danakil ecosystems, challenging the notion of decreasing diversity under extreme conditions. Metabolic flexibility to utilize multiple energy and carbon resources generated by local hydrothermalism along feast-and-famine strategies seemingly shapes microbial diversity in these ecosystems near life limits.
Collapse
Affiliation(s)
- Ana Gutiérrez-Preciado
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Bledina Dede
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Brittany A Baker
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Laura Eme
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Dyall-Smith M, Pfeiffer F. Global Distribution and Diversity of Haloarchaeal pL6-Family Plasmids. Genes (Basel) 2024; 15:1123. [PMID: 39336713 PMCID: PMC11431627 DOI: 10.3390/genes15091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Australian isolates of Haloquadratum walsbyi, a square-shaped haloarchaeon, often harbor small cryptic plasmids of the pL6-family, approximately 6 kb in size, and five examples have been previously described. These plasmids exhibit a highly conserved gene arrangement and encode replicases similar to those of betapleolipoviruses. To assess their global distribution and recover more examples for analysis, fifteen additional plasmids were reconstructed from the metagenomes of seven hypersaline sites across four countries: Argentina, Australia, Puerto Rico, and Spain. Including the five previously described plasmids, the average plasmid size is 6002 bp, with an average G+C content of 52.5%. The tetramers GGCC and CTAG are either absent or significantly under-represented, except in the two plasmids with the highest %G+C. All plasmids share a similar arrangement of genes organized as outwardly facing replication and ATPase modules, but variations were observed in some core genes, such as F2, and some plasmids had acquired accessory genes. Two plasmids, pCOLO-c1 and pISLA-c6, shared 92.7% nt identity despite originating from Argentina and Spain, respectively. Numerous metagenomic CRISPR spacers matched sequences in the fifteen reconstructed plasmids, indicating frequent invasion of haloarchaea. Spacers could be assigned to haloarchaeal genera by mapping their associated direct repeats (DR), with half of these matching Haloquadratum. Finally, strand-specific metatranscriptome (RNA-seq) data could be used to demonstrate the active transcription of two pL6-family plasmids, including antisense transcripts.
Collapse
Affiliation(s)
- Mike Dyall-Smith
- Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia;
- Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
5
|
Oren A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. NPJ BIODIVERSITY 2024; 3:18. [PMID: 39242694 PMCID: PMC11332174 DOI: 10.1038/s44185-024-00050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 09/09/2024]
Abstract
Our understanding of the microbial diversity inhabiting hypersaline environments, here defined as containing >100-150 g/L salts, has greatly increased in the past five years. Halophiles are found in each of the three domains of life. Many novel types have been cultivated, and metagenomics and other cultivation-independent approaches have revealed the existence of many previously unrecognized lineages. Syntrophic interactions between different phylogenetic lineages have been discovered, such as the symbiosis between members of the archaeal class Halobacteria and the 'Candidatus Nanohalarchaeota'. Metagenomics techniques also have shed light on the biogeography of halophiles, especially of the genera Salinibacter (Bacteria) and Haloquadratum and Halorubrum (Archaea). Exploration of the microbiome of hypersaline lakes led to the discovery of novel types of metabolism previously unknown to occur at high salt concentrations. Studies of environments with high concentrations of chaotropic ions such as magnesium, calcium, and lithium have refined our understanding of the limits of life.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
6
|
Cui HL, Hou J, Amoozegar MA, Dyall-Smith ML, de la Haba RR, Minegishi H, Montalvo-Rodriguez R, Oren A, Sanchez-Porro C, Ventosa A, Vreeland RH. Proposed minimal standards for description of new taxa of the class Halobacteria. Int J Syst Evol Microbiol 2024; 74:006290. [PMID: 38456846 PMCID: PMC10999741 DOI: 10.1099/ijsem.0.006290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
Halophilic archaea of the class Halobacteria are the most salt-requiring prokaryotes within the domain Archaea. In 1997, minimal standards for the description of new taxa in the order Halobacteriales were proposed. From then on, the taxonomy of the class Halobacteria provides an excellent example of how changing concepts on prokaryote taxonomy and the development of new methods were implemented. The last decades have witnessed a rapid expansion of the number of described taxa within the class Halobacteria coinciding with the era of genome sequencing development. The current members of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria propose these revisions to the recommended minimal standards and encourage the use of advanced technologies in the taxonomic description of members of the Halobacteria. Most previously required and some recommended minimal standards for the description of new taxa in the class Halobacteria were retained in the present revision, but changes have been proposed in line with the new methodologies. In addition to the 16S rRNA gene, the rpoB' gene is an important molecular marker for the identification of members of the Halobacteria. Phylogenomic analysis based on concatenated conserved, single-copy marker genes is required to infer the taxonomic status of new taxa. The overall genome relatedness indexes have proven to be determinative in the classification of the taxa within the class Halobacteria. Average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values should be calculated for rigorous comparison among close relatives.
Collapse
Affiliation(s)
- Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mohammad Ali Amoozegar
- Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran
| | - Mike L. Dyall-Smith
- Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, 3010, Australia
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Hiroaki Minegishi
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University, Kawagoe, Japan
| | | | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Cristina Sanchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Russell H. Vreeland
- Eastern Shore Microbes, 15397 Merry Cat Lane, Post Office Box 216, Belle Haven, VA 23306, USA
| |
Collapse
|
7
|
León MJ, Sánchez-Porro C, de la Haba RR, Pfeiffer F, Dyall-Smith M, Oksanen HM, Ventosa A. Halobacterium hubeiense sp. nov., a haloarchaeal species isolated from a bore core drilled in Hubei Province, PR China. Int J Syst Evol Microbiol 2024; 74:006296. [PMID: 38512754 PMCID: PMC11004503 DOI: 10.1099/ijsem.0.006296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Eight colonies of live microbes were isolated from an extensively surface-sterilized halite sample which had been retrieved from a depth of 2000 m from a salt mine in the Qianjiang Depression, Hubei Province, PR China. The eight colonies, obtained after 4 weeks of incubation, were named JI20-1T-JI20-8 and JI20-1T was selected as the type strain. The strains have been previously described, including a genomic analysis based on the complete genome for strain JI20-1T and draft genomes for the other strains. In that study, the name Halobacterium hubeiense was suggested, based on the location of the drilling site. Previous phylogenomic analysis showed that strain JI20-1T is most closely related to the Permian isolate Halobacterium noricense from Alpine rock salt. The orthologous average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH) percentages between the eight strains are 100-99.6 % and 99.8-96.4 %, respectively. The orthoANI and dDDH values of these strains with respect to the type strains of species of the genus Halobacterium are 89.9-78.2 % and 37.3-21.6 %, respectively, supporting their placement in a novel extremely halophilic archaeal species. The phylogenomic tree based on the comparison of sequences of 632 core-orthologous proteins confirmed the novel species status for these haloarchaea. The polar lipid profile includes phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and sulfated galactosyl mannosyl galactosyl glucosyl diether, a profile compatible with that of Halobacterium noricense. Based on genomic, phenotypic, and chemotaxonomic characterization, we propose strain JI20-1T (=DSM 114402T = HAMBI 3616T) as the type strain of a novel species in the genus Halobacterium, with the name Halobacterium hubeiense sp. nov.
Collapse
Affiliation(s)
- María José León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Biology II, Ulm University, 89069 Ulm, Germany
| | - Mike Dyall-Smith
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
8
|
Arahal D, Bisgaard M, Christensen H, Clermont D, Dijkshoorn L, Duim B, Emler S, Figge M, Göker M, Moore ERB, Nemec A, Nørskov-Lauritsen N, Nübel U, On SLW, Vandamme P, Ventosa A. The best of both worlds: a proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180015 DOI: 10.1099/ijsem.0.006188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
The naming of prokaryotes is governed by the International Code of Nomenclature of Prokaryotes (ICNP) and partially by the International Code of Nomenclature for Algae, Fungi and Plants (ICN). Such codes must be able to determine names of taxa in a universal and unambiguous manner, thus serving as a common language across different fields and activities. This unity is undermined when a new code of nomenclature emerges that overlaps in scope with an established, time-tested code and uses the same format of names but assigns different nomenclatural status values to the names. The resulting nomenclatural confusion is not beneficial to the wider scientific community. Such ambiguity is expected to result from the establishment of the 'Code of Nomenclature of Prokaryotes Described from DNA Sequence Data' ('SeqCode'), which is in general and specific conflict with the ICNP and the ICN. Shortcomings in the interpretation of the ICNP may have exacerbated the incompatibility between the codes. It is reiterated as to why proposals to accept sequences as nomenclatural types of species and subspecies with validly published names, now implemented in the SeqCode, have not been implemented by the International Committee on Systematics of Prokaryotes (ICSP), which oversees the ICNP. The absence of certain regulations from the ICNP for the naming of as yet uncultivated prokaryotes is an acceptable scientific argument, although it does not justify the establishment of a separate code. Moreover, the proposals rejected by the ICSP are unnecessary to adequately regulate the naming of uncultivated prokaryotes. To provide a better service to the wider scientific community, an alternative proposal to emend the ICNP is presented, which would result in Candidatus names being regulated analogously to validly published names. This proposal is fully consistent with previous ICSP decisions, preserves the essential unity of nomenclature and avoids the expected nomenclatural confusion.
Collapse
Affiliation(s)
- David Arahal
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | | | - Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, CRBIP, CIP-Collection of Institut Pasteur, F-75015 Paris, France
| | - Lenie Dijkshoorn
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, Leiden / Torensteelaan 68, 3281 MA Numansdorp, Netherlands
| | - Birgitta Duim
- Department Biomolecular Health Sciences, Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CS Utrecht, Netherlands
| | - Stefan Emler
- SmartGene Services SARL, EPFL Innovation Park, PSE-C, CH-1015 Lausanne, Switzerland
| | - Marian Figge
- Westerdijk Fungal Biodiversity Institute Uppsalalaan 8 3584 CT, Utrecht, Netherlands
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Edward R B Moore
- Department of Infectious Disease and Culture Collection University of Gothenburg (CCUG), Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-402 34 Gothenburg, Sweden
| | - Alexandr Nemec
- Laboratory of Bacterial Genetics, National Institute of Public Health, Srobarova 48, 100 00 Prague 10, Czech Republic
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, V Úvalu 84, 150 06 Prague 5, Czechia
| | | | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Faculty of Agricultural Science, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Peter Vandamme
- BCCM/LMG, Laboratorium voor Microbiologie, Universiteit Gent (UGent) K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, C/. Prof. Garcia Gonzalez 2, ES-41012 Sevilla, Spain
| |
Collapse
|
9
|
Oren A, Göker M. Validation List no. 213. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2023; 73. [PMID: 37787078 DOI: 10.1099/ijsem.0.005997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures,, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Cui C, Han D, Hou J, Cui HL. Genome-based classification of the class Halobacteria and description of Haladaptataceae fam. nov. and Halorubellaceae fam. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37486319 DOI: 10.1099/ijsem.0.005984] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Currently, there are four mainstream taxonomic opinions on the classification of the class Halobacteria at the family and order levels. The International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteria (ICSP), List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Centre for Biotechnology Information (NCBI) adopted taxonomies have three to four orders and up to eight families, while the Genome Taxonomy Database (GTDB) taxonomy proposes only one order with nine families. To resolve the taxonomic inconsistency, phylogenomic analyses based on concatenated single-copy orthologous proteins and 122 concatenated conserved single-copy marker proteins were conducted to infer the taxonomic status of the current representatives of the class Halobacteria at the family and order levels. The current 76 genera with validly published names of the class Halobacteria were able to be assigned into eight families in one order. On the basis of these results, it is proposed that the current species with validly published names of the class Halobacteria should be remerged into the order Halobacteriales, then assigned to eight families, Haladaptataceae, Haloarculaceae, Halobacteriaceae, Halococcaceae, Haloferacaceae, Natronoarchaeaceae, Natrialbaceae and Halorubellaceae. Thus, Haladaptataceae fam. nov. is described based on Haladaptatus, Halomicrococcus and Halorussus and Halorubellaceae fam. nov. is proposed incorporating Haloarchaeobius and Halorubellus, respectively.
Collapse
Affiliation(s)
- Can Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dong Han
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, PR China
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|