1
|
Zhong S, Jiang Z, Zhang J, Gu Z, Wei J, Li B, Li F. Study on the Structure and Function of Intestinal Microorganisms in Silkworm Maggot Exorista sorbillans. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70008. [PMID: 39552162 DOI: 10.1002/arch.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Insects have important symbiotic relationships with their intestinal microbiota. The intestinal microbiota is involved in or influences various processes in insects such as development, metabolism, immunity, and reproduction. Currently, research on the intestinal microbiota of parasitic insects is still in its early stages. The tachinid parasitoid Exorista sorbillans is a dipteran parasitic insect, with the silkworm (Bombyx mori) being its main host. Silkworms parasitized by E. sorbillans can suffer from severe silkworm maggot disease, which also poses a serious threat to sericulture. In this study, the intestinal microbiota of larval E. sorbillans at three instar stages was analyzed using 16S rRNA amplicon sequencing to explore the community composition of the intestinal microbiota. Additionally, using conventional culture methods, six cultivable strains were isolated and identified from the larval E. sorbillans on an antibiotic-free LB medium, and four cultivable strains were isolated and identified from the hemolymph of parasitized silkworms. This study investigated the E. sorbillans from the perspective of intestinal microbiota, elucidating the composition and structural characteristics of the intestinal microbiota of the tachinid parasitoid, and preliminarily discussing the functional roles of several major microorganisms, which helps to further clarify the potential mechanisms of interaction between the parasitoid and the silkworm.
Collapse
Affiliation(s)
- Siyin Zhong
- School of Life Sciences, Soochow University, Suzhou, P.R. China
| | - Zhe Jiang
- School of Life Sciences, Soochow University, Suzhou, P.R. China
| | - Jiabao Zhang
- School of Life Sciences, Soochow University, Suzhou, P.R. China
| | - Zhiya Gu
- School of Life Sciences, Soochow University, Suzhou, P.R. China
- Sericulture Institute of Soochow University, Suzhou, P.R. China
| | - Jing Wei
- School of Life Sciences, Soochow University, Suzhou, P.R. China
- School of Chemistry and Bioengineering, Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Yizhou, China
| | - Bing Li
- School of Life Sciences, Soochow University, Suzhou, P.R. China
- Sericulture Institute of Soochow University, Suzhou, P.R. China
| | - Fanchi Li
- School of Life Sciences, Soochow University, Suzhou, P.R. China
- Sericulture Institute of Soochow University, Suzhou, P.R. China
- School of Chemistry and Bioengineering, Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Yizhou, China
| |
Collapse
|
2
|
Hu NN, Wang ZQ, Zhang SJ, Wang ZZ, Chen XX. Characterization of larval gut microbiota of two endoparasitoid wasps associated with their common host, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae). Microbiol Spectr 2024; 12:e0120824. [PMID: 39248477 PMCID: PMC11448028 DOI: 10.1128/spectrum.01208-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 09/10/2024] Open
Abstract
Insect gut microbes play important roles in digestion, metabolism, development, and environmental adaptation. Parasitoid wasps are one of the most important biological control agents in pest control, while the gut microbial species compositions and the associated functions have been poorly investigated. Two endoparasitoid wasps, Cotesia vestalis and Diadromus collaris, parasitize the larval stage and pupal stage of the diamondback moth, Plutella xylostella, respectively. Using whole-genome shotgun metagenomic sequencing, we characterized the gut microbial composition, diversity, and potential functional roles associated with the two parasitoid wasp larvae. The results reveal that Proteobacteria and Firmicutes are the dominant phyla in the gut of C. vestalis and D. collaris larvae, with Rhizobium and Enterococcus being the dominant genera. The putative microbial functions associated with the two parasitoid wasps might play a virtual role in assisting in consuming the host's nutritional composition. The enriched CAZymes family genes are primarily involved in the degradation and synthesis of chitin. Despite the richness of microbial species and communities, the microbes species and the microbial community structure exhibit significant similarity between the two parasitoid wasps and between the parasitoid wasp and the host P. xylostella. Notably, the prevalence of the genus Enterococcus shared among them suggests a possible link of gut microbes between the host and their associated parasitoids. Our study offers insights into the gut microbe-based interactions between the host and parasitoid wasps for the first time, potentially paving the way for the development of an ecologically friendly biocontrol strategy against the pest P. xylostella.IMPORTANCEEndoparasitoid wasps spend the majority of their lifespan within their host and heavily rely on the host's nutrition for survival. There is limited understanding regarding the composition and physiological impacts of gut microbial communities in parasitoid wasps, particularly during the larval stage, which is directly linked to the host. Based on a thorough characterization of the gut microbe and comprehensive comparative analysis, we found the microbial species of the larval parasitoid wasp Cotesia vestalis and the pupal parasitoid wasp Diadromus collaris were similar, sharing 159 genera and 277 species, as were the microbial community structure. Certain of the dominant microbial strains of the two parasitoid wasps were similar to that of their host Plutella xylostella larvae, revealing host insect may affect the microbial community of the parasitoid wasps. The putative microbial functions associated with the parasitoid wasp larvae play an important role in dietary consumption.
Collapse
Affiliation(s)
- Na-na Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zi-qi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Si-jie Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhi-zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology and Breeding, Zhejiang University, Hangzhou, China
| | - Xue-xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology and Breeding, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Decaestecker E, Van de Moortel B, Mukherjee S, Gurung A, Stoks R, De Meester L. Hierarchical eco-evo dynamics mediated by the gut microbiome. Trends Ecol Evol 2024; 39:165-174. [PMID: 37863775 DOI: 10.1016/j.tree.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
The concept of eco-evolutionary (eco-evo) dynamics, stating that ecological and evolutionary processes occur at similar time scales and influence each other, has contributed to our understanding of responses of populations, communities, and ecosystems to environmental change. Phenotypes, central to these eco-evo processes, can be strongly impacted by the gut microbiome. The gut microbiome shapes eco-evo dynamics in the host community through its effects on the host phenotype. Complex eco-evo feedback loops between the gut microbiome and the host communities might thus be common. Bottom-up dynamics occur when eco-evo interactions shaping the gut microbiome affect host phenotypes with consequences at population, community, and ecosystem levels. Top-down dynamics occur when eco-evo dynamics shaping the host community structure the gut microbiome.
Collapse
Affiliation(s)
- Ellen Decaestecker
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium.
| | - Broos Van de Moortel
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Laboratory of Reproductive Genomics, KU Leuven, B-3000 Leuven, Belgium
| | - Aditi Gurung
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, B-3000 Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), D-12587 Berlin, Germany; Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
4
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
5
|
Nasonia-microbiome associations: a model for evolutionary hologenomics research. Trends Parasitol 2023; 39:101-112. [PMID: 36496327 DOI: 10.1016/j.pt.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
In recent years, with the development of microbial research technologies, microbiota research has received widespread attention. The parasitoid wasp genus Nasonia is a good model organism for studying insect behavior, development, evolutionary genetics, speciation, and symbiosis. This review describes key advances and progress in the field of the Nasonia-microbiome interactions. We provide an overview of the advantages of Nasonia as a model organism for microbiome studies, list research methods to study the Nasonia microbiome, and discuss recent discoveries in Nasonia microbiome research. This summary of the complexities of Nasonia-microbiome relationships will help to contribute to a better understanding of the interactions between animals and their microbiomes and establish a clear research direction for Nasonia-microbiome interactions in the future.
Collapse
|
6
|
Sato Y, Wippler J, Wentrup C, Ansorge R, Sadowski M, Gruber-Vodicka H, Dubilier N, Kleiner M. Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. MICROBIOME 2022; 10:178. [PMID: 36273146 PMCID: PMC9587655 DOI: 10.1186/s40168-022-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.
Collapse
Affiliation(s)
- Yui Sato
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Juliane Wippler
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Rebecca Ansorge
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
7
|
Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010825. [PMID: 36084158 PMCID: PMC9491580 DOI: 10.1371/journal.ppat.1010825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing “travelers’ diarrhea”, urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species—P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifaciens transposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs. Pathogens express special molecules or structures called virulence factors to successfully infect a host. By identifying these factors, we can learn how hosts fight and how pathogens cause infections. Here, we identified virulence factors of the human and fruit fly pathogen Providencia alcalifaciens, by infecting flies with a series of mutants of this pathogen. In this way, we detected 23 mutants that were less virulent. Some of these less virulent mutants were hypersensitive to fruit fly immune defense molecules called antimicrobial peptides (AMPs), while others were sensitive to reactive oxygen species (ROS) produced by the immune cells. Notably, AMPs-sensitive mutants remained virulent in a Drosophila mutant that lacks AMPs, while pathogens sensitive to oxidative stress retained their virulence in a fruit fly mutant devoid of oxidative species. These results suggest that the ability of P. alcalifaciens to resist two major host immune molecules, namely AMPs and ROS, is the major virulence mechanism. Overall, our systematic analysis of P. alcalifaciens virulence factors has identified the major defense mechanisms of the fruit fly against this pathogen and the bacterial mechanisms to combat these immune responses.
Collapse
|
8
|
Bell K, Bordenstein SR. A Margulian View of Symbiosis and Speciation: the Nasonia Wasp System. Symbiosis 2022. [DOI: 10.1007/s13199-022-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractSpecies are fundamental units of biology that exemplify lineage diversification, while symbiosis of microbes and macrobial hosts exemplify lineage unification between the domains of life. While these conceptual differences between speciation and symbiosis often dominate the narrative of the respective fields, Lynn Margulis argued for interconnection between these two subdisciplines of biology in a manner that left a legacy for scholars and students alike to pursue, detail, and discover. The Margulian perspective has always been that host evolutionary processes such as speciation are more impacted by microbial symbioses than typically appreciated. In this article, we present and review the case system that she long envisioned, one in which layers of microbial symbiosis reduce species interbreeding and assist species diversification among a closely related group of small, metallic green, parasitoid wasps from the genus Nasonia.
Collapse
|
9
|
Abstract
Saccharibacteria (TM7), which are obligate episymbionts growing on the surface of host bacteria, may play an important role in oral disease, such as periodontitis (1, 2). As TM7 is a newly cultured lineage of bacteria, its research is limited by the small number of isolated representatives relative to the number of TM7 genomes assembled from culture-independent studies (3–5). A comprehensive view of both TM7 taxa and TM7 strain-level variations remains opaque. In this study, we expanded our previously developed TM7 baiting method into using many host bacteria in parallel, which allowed us to obtain 37 TM7 strains from the human oral cavity. These strains were further classified into low-enrichment (LE, n = 24) and high-enrichment (HE, n = 13) groups based on their proficiency at propagating on host bacteria. Of the 13 HE strains, 10 belong to “Candidatus Nanosynbacter sp.” strain HMT-352 (human microbial taxon) (6), enabling us to explore both the phenotypic and genomic strain variations within a single TM7 species. We show that TM7 HMT-352 strains exhibit a diverse host range and varied growth dynamics during the establishment of their episymbiotic relationship with host bacteria. Furthermore, despite HMT-352 strains sharing a majority of their genes, we identified several gene clusters that may play a pivotal role in host affinity. More importantly, our comparative analyses also provide TM7 gene candidates associated with strain-level phenotypic variation that may be important for episymbiotic interactions with host bacteria. IMPORTANCE Candidate phylum radiation (CPR) bacteria comprise a poorly understood phylum that is estimated to encompass ∼26% of all diversity of domain bacteria. Among CPR bacteria, the Saccharibacteria lineage (TM7) is of particular interest, as it is found in high abundance in the mammal microbiome and has been associated with oral disease. While many CPR genomes, TM7 included, have been acquired through culture-independent methods, only a small number of representatives have been isolated. Such isolated representatives, however, shed light on the physiology, pathogenesis, and episymbiotic interactions of TM7. Combined with genomic analyses, experiments involving isolated representatives can distinguish phylogenetic to phenotypic discrepancies and better identify genes of importance. In this study, we utilized multiple host bacteria in parallel to isolate TM7 bacteria and examined strain-level variation in TM7 to reveal key genes that may drive TM7-host interactions. Our findings accentuate that broad phylogenetic characterization of CPR is the next step in understanding these bacteria.
Collapse
|
10
|
Li J, Wei X, Huang D, Xiao J. The Phylosymbiosis Pattern Between the Fig Wasps of the Same Genus and Their Associated Microbiota. Front Microbiol 2022; 12:800190. [PMID: 35237241 PMCID: PMC8882959 DOI: 10.3389/fmicb.2021.800190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities can be critical for many metazoans, which can lead to the observation of phylosymbiosis with phylogenetically related species sharing similar microbial communities. Most of the previous studies on phylosymbiosis were conducted across the host families or genera. However, it is unclear whether the phylosymbiosis signal is still prevalent at lower taxonomic levels. In this study, 54 individuals from six species of the fig wasp genus Ceratosolen (Hymenoptera: Agaonidae) collected from nine natural populations and their associated microbiota were investigated. The fig wasp species were morphologically identified and further determined by mitochondrial CO1 gene fragments and nuclear ITS2 sequences, and the V4 region of 16S rRNA gene was sequenced to analyze the bacterial communities. The results suggest a significant positive correlation between host genetic characteristics and microbial diversity characteristics, indicating the phylosymbiosis signal between the phylogeny of insect hosts and the associated microbiota in the lower classification level within a genus. Moreover, we found that the endosymbiotic Wolbachia carried by fig wasps led to a decrease in bacterial diversity of host-associated microbial communities. This study contributes to our understanding of the role of host phylogeny, as well as the role of endosymbionts in shaping the host-associated microbial community.
Collapse
|