1
|
Rohwer RR, Kirkpatrick M, Garcia SL, Kellom M, McMahon KD, Baker BJ. Two decades of bacterial ecology and evolution in a freshwater lake. Nat Microbiol 2025; 10:246-257. [PMID: 39753668 DOI: 10.1038/s41564-024-01888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent. By tracking strain composition via single nucleotide variants, we identified cyclical seasonal patterns in 80% and decadal shifts in 20% of species. In the dominant freshwater family Nanopelagicaceae, environmental extremes coincided with shifts in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or, equivalently, as evolutionary change. Rather than as distinct interacting processes, we propose a conceptualization of ecology and evolution as a continuum to better describe change in microbial communities.
Collapse
Affiliation(s)
- Robin R Rohwer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| | - Mark Kirkpatrick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sarahi L Garcia
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Science for Life Laboratory, Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Matthew Kellom
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Brett J Baker
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
- Department of Marine Science, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Rosani U, Sollitto M, Fogal N, Salata C. Comparative analysis of Presence-Absence gene Variations in five hard tick species: impact and functional considerations. Int J Parasitol 2024; 54:147-156. [PMID: 37806426 DOI: 10.1016/j.ijpara.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/06/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Tick species are vectors of harmful human and animal diseases, and their expansion is raising concerns under the global environmental changes' scenario. Ticks host and transmit bacteria, protozoa and viruses, making the understanding of host-pathogen molecular pathways critical to development of effective disease control strategies. Despite the considerable sizes and repeat contents of tick genomes, individual tick genomics is perhaps the most effective approach to reveal genotypic traits of interest. Presence-Absence gene Variations (PAVs) can contribute to individual differences within species, with dispensable genes carried by subsets of individuals possibly underpinning functional significance at individual or population-levels. We exploited 350 resequencing datasets of Dermacentor silvarum, Haemaphysalis longicornis, Ixodes persulcatus, Rhipicephalus microplus and Rhipicephalus sanguineus hard tick specimens to reveal the extension of PAV and the conservation of dispensable genes among individuals and, comparatively, between species. Overall, we traced 550-3,346 dispensable genes per species and were able to reconstruct 5.3-7 Mb of genomic regions not included in the respective reference genomes, as part of the tick pangenomes. Both dispensable genes and de novo predicted genes indicated that PAVs preferentially impacted mobile genetic elements in these tick species.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 35121 Padova, Italy.
| | - Marco Sollitto
- Department of Life Science, University of Trieste, 34100 Trieste, Italy; Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Nicolò Fogal
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| |
Collapse
|
3
|
Trouche B, Schauberger C, Bouderka F, Auguet JC, Belser C, Poulain J, Thamdrup B, Wincker P, Arnaud-Haond S, Glud RN, Maignien L. Distribution and genomic variation of ammonia-oxidizing archaea in abyssal and hadal surface sediments. ISME COMMUNICATIONS 2023; 3:133. [PMID: 38135695 PMCID: PMC10746724 DOI: 10.1038/s43705-023-00341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Ammonia-oxidizing archaea of the phylum Thaumarchaeota play a central role in the biogeochemical cycling of nitrogen in benthic sediments, at the interface between pelagic and subsurface ecosystems. However, our understanding of their niche separation and of the processes controlling their population structure in hadal and abyssal surface sediments is still limited. Here, we reconstructed 47 AOA metagenome-assembled genomes (MAGs) from surface sediments of the Atacama and Kermadec trench systems. They formed deep-sea-specific groups within the family Nitrosopumilaceae and were assigned to six amoA gene-based clades. MAGs from different clades had distinct distribution patterns along oxygen-ammonium counter gradients in surface sediments. At the species level, MAGs thus seemed to form different ecotypes and follow deterministic niche-based distributions. In contrast, intraspecific population structure, defined by patterns of Single Nucleotide Variants (SNV), seemed to reflect more complex contributions of both deterministic and stochastic processes. Firstly, the bathymetric range had a strong effect on population structure, with distinct populations in abyssal plains and hadal trenches. Then, hadal populations were clearly separated by trench system, suggesting a strong isolation-by-topography effect, whereas abyssal populations were rather controlled by sediment depth or geographic distances, depending on the clade considered. Interestingly, genetic variability between samples was lowest in sediment layers where the mean MAG coverage was highest, highlighting the importance of selective pressure linked with each AOA clade's ecological niche. Overall, our results show that deep-sea AOA genome distributions seem to follow both deterministic and stochastic processes, depending on the genomic variability scale considered.
Collapse
Affiliation(s)
- Blandine Trouche
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France.
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Clemens Schauberger
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Feriel Bouderka
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France
| | | | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | - Bo Thamdrup
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, 91057, Evry, France
| | | | - Ronnie N Glud
- Hadal & Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Loïs Maignien
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280, Plouzané, France.
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA, USA.
| |
Collapse
|
4
|
Hwang Y, Roux S, Coclet C, Krause SJE, Girguis PR. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats. Nat Microbiol 2023; 8:946-957. [PMID: 37024618 PMCID: PMC10159854 DOI: 10.1038/s41564-023-01347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/25/2023] [Indexed: 04/08/2023]
Abstract
Many microbes in nature reside in dense, metabolically interdependent communities. We investigated the nature and extent of microbe-virus interactions in relation to microbial density and syntrophy by examining microbe-virus interactions in a biomass dense, deep-sea hydrothermal mat. Using metagenomic sequencing, we find numerous instances where phylogenetically distant (up to domain level) microbes encode CRISPR-based immunity against the same viruses in the mat. Evidence of viral interactions with hosts cross-cutting microbial domains is particularly striking between known syntrophic partners, for example those engaged in anaerobic methanotrophy. These patterns are corroborated by proximity-ligation-based (Hi-C) inference. Surveys of public datasets reveal additional viruses interacting with hosts across domains in diverse ecosystems known to harbour syntrophic biofilms. We propose that the entry of viral particles and/or DNA to non-primary host cells may be a common phenomenon in densely populated ecosystems, with eco-evolutionary implications for syntrophic microbes and CRISPR-mediated inter-population augmentation of resilience against viruses.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Simon Roux
- DOE (Department of Energy) Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Clément Coclet
- DOE (Department of Energy) Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sebastian J E Krause
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|