1
|
Bhattacharjee A, Singh AK. Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil. J Microbiol 2024; 62:511-523. [PMID: 38904697 DOI: 10.1007/s12275-024-00129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 06/22/2024]
Abstract
Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
- Department of Botany, Dibrugarh Hanumanbax Surajmall Kanoi College, Dibrugarh, 786001, Assam, India
| | - Anil Kumar Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India.
| |
Collapse
|
2
|
Zhu Y, Feng Z, Xu Y, Luo S, Zhang R, Shi X, Wu X, Zhang H. Rapid detection of Mycobacterium tuberculosis based on cyp141 via real-time fluorescence loop-mediated isothermal amplification (cyp141-RealAmp). Front Cell Infect Microbiol 2024; 14:1349063. [PMID: 38938885 PMCID: PMC11208306 DOI: 10.3389/fcimb.2024.1349063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
Background The rapid detection of Mycobacterium tuberculosis (MTB) is essential for controlling tuberculosis. Methods We designed a portable thermocycler-based real-time fluorescence loop-mediated isothermal amplification assay (cyp141-RealAmp) using six oligonucleotide primers derived from cyp141 to detect MTB. A combined number of 213 sputum samples (169 obtained from clinically diagnosed cases of pulmonary TB and 44 from a control group without tuberculosis) underwent Acid-fast bacillus (AFB) smear, culture, Xpert MTB/RIF assays, and cyp141-RealAmp assay. Results By targeting MTB cyp141, this technique could detect as low as 10 copies/reaction within 30 min, and it was successfully rejected by other mycobacteria and other bacterial species tested. Of the 169 patients, there was no statistical difference between the detection rate of cyp141-RealAmp (92.90%, 95% CI: 89.03-96.07) and that of Xpert MTB/RIF (94.67%, 95% CI: 91.28-98.06) (P > 0.05), but both were statistically higher than that of culture (65.68%, 95% CI: 58.52-72.84) (P< 0.05) and AFB (57.40%, 95% CI: 49.94-64.86) (P< 0.05). Both cyp141-RealAmp and Xpert MTB/RIF had a specificity of 100%. Furthermore, a high concordance between cyp141-RealAmp and Xpert MTB/RIF was found (Kappa = 0.89). Conclusion The cyp141-RealAmp assay was shown to be effective, responsive, and accurate in this study. This method offers a prospective strategy for the speedy and precise detection of MTB.
Collapse
Affiliation(s)
- Yinyin Zhu
- Department of Microbial Testing, Nanjing Center for Disease Control and Prevention Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi Feng
- Department of Microbial Testing, Nanjing Center for Disease Control and Prevention Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinfang Xu
- Department of Infectious Diseases, the Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Sha Luo
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruixian Zhang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xudong Shi
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xuping Wu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongying Zhang
- Department of Microbial Testing, Nanjing Center for Disease Control and Prevention Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Li Y, Wei Y, Guo X, Li X, Lu L, Hu L, He Z. Insertion sequence transposition activates antimycobacteriophage immunity through an lsr2-silenced lipid metabolism gene island. MLIFE 2024; 3:87-100. [PMID: 38827510 PMCID: PMC11139207 DOI: 10.1002/mlf2.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 06/04/2024]
Abstract
Insertion sequences (ISs) exist widely in bacterial genomes, but their roles in the evolution of bacterial antiphage defense remain to be clarified. Here, we report that, under the pressure of phage infection, the IS1096 transposition of Mycobacterium smegmatis into the lsr2 gene can occur at high frequencies, which endows the mutant mycobacterium with a broad-spectrum antiphage ability. Lsr2 functions as a negative regulator and directly silences expression of a gene island composed of 11 lipid metabolism-related genes. The complete or partial loss of the gene island leads to a significant decrease of bacteriophage adsorption to the mycobacterium, thus defending against phage infection. Strikingly, a phage that has evolved mutations in two tail-filament genes can re-escape from the lsr2 inactivation-triggered host defense. This study uncovered a new signaling pathway for activating antimycobacteriophage immunity by IS transposition and provided insight into the natural evolution of bacterial antiphage defense.
Collapse
Affiliation(s)
- Yakun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Yuyun Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Xiaohui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lining Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Zheng‐Guo He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
4
|
Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R, Limberis J, Sirgel F, Dolby T, Spies C, Reuter A, Folkerts M, Allender C, Lemmer D, Van Rie A, Gagneux S, Rigouts L, Te Riele J, Dheda K, Engelthaler DM, Warren R, Metcalfe J, Cox H, Theron G. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. THE LANCET. MICROBE 2023; 4:e972-e982. [PMID: 37931638 PMCID: PMC10842724 DOI: 10.1016/s2666-5247(23)00172-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Bedaquiline is a life-saving tuberculosis drug undergoing global scale-up. People at risk of weak tuberculosis drug regimens are a priority for novel drug access despite the potential source of Mycobacterium tuberculosis-resistant strains. We aimed to characterise bedaquiline resistance in individuals who had sustained culture positivity during bedaquiline-based treatment. METHODS We did a retrospective longitudinal cohort study of adults (aged ≥18 years) with culture-positive pulmonary tuberculosis who received at least 4 months of a bedaquiline-containing regimen from 12 drug-resistant tuberculosis treatment facilities in Cape Town, South Africa, between Jan 20, 2016, and Nov 20, 2017. Sputum was programmatically collected at baseline (ie, before bedaquiline initiation) and each month to monitor treatment response per the national algorithm. The last available isolate from the sputum collected at or after 4 months of bedaquiline was designated the follow-up isolate. Phenotypic drug susceptibility testing for bedaquiline was done on baseline and follow-up isolates in MGIT960 media (WHO-recommended critical concentration of 1 μg/mL). Targeted deep sequencing for Rv0678, atpE, and pepQ, as well as whole-genome sequencing were also done. FINDINGS In total, 40 (31%) of 129 patients from an estimated pool were eligible for this study. Overall, three (8%) of 38 patients assessable by phenotypic drug susceptibility testing for bedaquiline had primary resistance, 18 (47%) gained resistance (acquired or reinfection), and 17 (45%) were susceptible at both baseline and follow-up. Several Rv0678 and pepQ single-nucleotide polymorphisms and indels were associated with resistance. Although variants occurred in Rv0676c and Rv1979c, these variants were not associated with resistance. Targeted deep sequencing detected low-level variants undetected by whole-genome sequencing; however, none were in genes without variants already detected by whole-genome sequencing. Patients with baseline fluoroquinolone resistance, clofazimine exposure, and four or less effective drugs were more likely to have bedaquiline-resistant gain. Resistance gain was primarily due to acquisition; however, some reinfection by resistant strains occurred. INTERPRETATION Bedaquiline-resistance gain, for which we identified risk factors, was common in these programmatically treated patients with sustained culture positivity. Our study highlights risks associated with implementing life-saving new drugs and shows evidence of bedaquiline-resistance transmission. Routine drug susceptibility testing should urgently accompany scale-up of new drugs; however, rapid drug susceptibility testing for bedaquiline remains challenging given the diversity of variants observed. FUNDING Doris Duke Charitable Foundation, US National Institute of Allergy and Infectious Diseases, South African Medical Research Council, National Research Foundation, Research Foundation Flanders, Stellenbosch University Faculty of Medicine Health Sciences, South African National Research Foundation, Swiss National Science Foundation, and Wellcome Trust.
Collapse
Affiliation(s)
- Brigitta Derendinger
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Margaretha de Vos
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; FIND, Geneva, Switzerland
| | | | - Rencia Alberts
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rebecca Tadokera
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jason Limberis
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, CA, USA
| | - Frik Sirgel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tania Dolby
- National Health Laboratory Services Green Point, Cape Town, South Africa
| | - Claudia Spies
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anja Reuter
- Médecins Sans Frontières, Khayelitsha, South Africa
| | - Megan Folkerts
- Translational Genomics Research Institute, Flagstaff, AZ, USA
| | | | - Darrin Lemmer
- Translational Genomics Research Institute, Flagstaff, AZ, USA
| | - Annelies Van Rie
- Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Leen Rigouts
- Department of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Keertan Dheda
- Division of Pulmonology, Department of Medicine, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, Cape Town, South Africa; Centre for the Study of Antimicrobial Resistance, South African Medical Research Council, Cape Town, South Africa; Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Robin Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - John Metcalfe
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, CA, USA
| | - Helen Cox
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Infectious Disease Research, University of Cape Town, South Africa
| | - Grant Theron
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
5
|
Song Z, Liu C, He W, Pei S, Liu D, Cao X, Wang Y, He P, Zhao B, Ou X, Xia H, Wang S, Zhao Y. Insight into the drug-resistant characteristics and genetic diversity of multidrug-resistant Mycobacterium tuberculosis in China. Microbiol Spectr 2023; 11:e0132423. [PMID: 37732780 PMCID: PMC10581218 DOI: 10.1128/spectrum.01324-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has a severe impact on public health. To investigate the drug-resistant profile, compensatory mutations and genetic variations among MDR-TB isolates, a total of 546 MDR-TB isolates from China underwent drug-susceptibility testing and whole genome sequencing for further analysis. The results showed that our isolates have a high rate of fluoroquinolone resistance (45.60%, 249/546) and a low proportion of conferring resistance to bedaquiline, clofazimine, linezolid, and delamanid. The majority of MDR-TB isolates (77.66%, 424/546) belong to Lineage 2.2.1, followed by Lineage 4.5 (6.41%, 35/546), and the Lineage 2 isolates have a strong association with pre-XDR/XDR-TB (P < 0.05) in our study. Epidemic success analysis using time-scaled haplotypic density (THD) showed that clustered isolates outperformed non-clustered isolates. Compensatory mutations happened in rpoA, rpoC, and non-RRDR of rpoB genes, which were found more frequently in clusters and were associated with the increase of THD index, suggesting that increased bacterial fitness was associated with MDR-TB transmission. In addition, the variants in resistance associated genes in MDR isolates are mainly focused on single nucleotide polymorphism mutations, and only a few genes have indel variants, such as katG, ethA. We also found some genes underwent indel variation correlated with the lineage and sub-lineage of isolates, suggesting the selective evolution of different lineage isolates. Thus, this analysis of the characterization and genetic diversity of MDR isolates would be helpful in developing effective strategies for treatment regimens and tailoring public interventions. IMPORTANCE Multidrug-resistant tuberculosis (MDR-TB) is a serious obstacle to tuberculosis prevention and control in China. This study provides insight into the drug-resistant characteristics of MDR combined with phenotypic drug-susceptibility testing and whole genome sequencing. The compensatory mutations and epidemic success analysis were analyzed by time-scaled haplotypic density (THD) method, suggesting clustered isolates and compensatory mutations are associated with MDR-TB transmission. In addition, the insertion and deletion variants happened in some genes, which are associated with the lineage and sub-lineage of isolates, such as the mpt64 gene. This study offered a valuable reference and increased understanding of MDR-TB in China, which could be crucial for achieving the objective of precision medicine in the prevention and treatment of MDR-TB.
Collapse
Affiliation(s)
- Zexuan Song
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chunfa Liu
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wencong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shaojun Pei
- School of Public Health, Peking University, Beijing, China
| | - Dongxin Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaolong Cao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xichao Ou
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Xia
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
6
|
Al-Jourani O, Benedict ST, Ross J, Layton AJ, van der Peet P, Marando VM, Bailey NP, Heunis T, Manion J, Mensitieri F, Franklin A, Abellon-Ruiz J, Oram SL, Parsons L, Cartmell A, Wright GSA, Baslé A, Trost M, Henrissat B, Munoz-Munoz J, Hirt RP, Kiessling LL, Lovering AL, Williams SJ, Lowe EC, Moynihan PJ. Identification of D-arabinan-degrading enzymes in mycobacteria. Nat Commun 2023; 14:2233. [PMID: 37076525 PMCID: PMC10115798 DOI: 10.1038/s41467-023-37839-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial cell growth and division require the coordinated action of enzymes that synthesize and degrade cell wall polymers. Here, we identify enzymes that cleave the D-arabinan core of arabinogalactan, an unusual component of the cell wall of Mycobacterium tuberculosis and other mycobacteria. We screened 14 human gut-derived Bacteroidetes for arabinogalactan-degrading activities and identified four families of glycoside hydrolases with activity against the D-arabinan or D-galactan components of arabinogalactan. Using one of these isolates with exo-D-galactofuranosidase activity, we generated enriched D-arabinan and used it to identify a strain of Dysgonomonas gadei as a D-arabinan degrader. This enabled the discovery of endo- and exo-acting enzymes that cleave D-arabinan, including members of the DUF2961 family (GH172) and a family of glycoside hydrolases (DUF4185/GH183) that display endo-D-arabinofuranase activity and are conserved in mycobacteria and other microbes. Mycobacterial genomes encode two conserved endo-D-arabinanases with different preferences for the D-arabinan-containing cell wall components arabinogalactan and lipoarabinomannan, suggesting they are important for cell wall modification and/or degradation. The discovery of these enzymes will support future studies into the structure and function of the mycobacterial cell wall.
Collapse
Affiliation(s)
- Omar Al-Jourani
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Samuel T Benedict
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jennifer Ross
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Abigail J Layton
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Phillip van der Peet
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Victoria M Marando
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA The Koch Integrative Cancer Research Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas P Bailey
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tiaan Heunis
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Joseph Manion
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Francesca Mensitieri
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Aaron Franklin
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Javier Abellon-Ruiz
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sophia L Oram
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lauren Parsons
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alan Cartmell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Arnaud Baslé
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthias Trost
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Robert P Hirt
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew L Lovering
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Elisabeth C Lowe
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Patrick J Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Modlin SJ, Mansjö M, Werngren J, Ejike CM, Hoffner SE, Valafar F. Pyrazinamide-resistant Tuberculosis Obscured From Common Targeted Molecular Diagnostics. Drug Resist Updat 2023; 68:100959. [PMID: 37043916 DOI: 10.1016/j.drup.2023.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Here, we describe a clinical case of pyrazinamide-resistant (PZA-R) tuberculosis (TB) reported as PZA-susceptible (PZA-S) by common molecular diagnostics. Phenotypic susceptibility testing (pDST) indicated PZA-R TB. Targeted Sanger sequencing reported wild-type PncA, indicating PZA-S TB. Whole Genome Sequencing (WGS) by PacBio and IonTorrent both detected deletion of a large portion of pncA, indicating PZA-R. Importantly, both WGS methods showed deletion of part of the primer region targeted by Sanger sequencing. Repeating Sanger sequencing from a culture in presence of PZA returned no result, revealing that 1) two minority susceptible subpopulations had vanished, 2) the PZA-R majority subpopulation harboring the pncA deletion could not be amplified by Sanger primers, and was thus obscured by amplification process. This case demonstrates how a small susceptible subpopulation can entirely obscure majority resistant populations from targeted molecular diagnostics and falsely imply homogenous susceptibility, leading to incorrect diagnosis. To our knowledge, this is the first report of a minority susceptible subpopulation masking a majority resistant population, causing targeted molecular diagnostics to call false susceptibility. The consequence of such genomic events is not limited to PZA. This phenomenon can impact molecular diagnostics' sensitivity whenever the resistance-conferring mutation is not fully within primer-targeted regions. This can be caused by structural changes of genomic context with phenotypic consequence as we report here, or by uncommon mechanisms of resistance. Such false susceptibility calls promote suboptimal treatment and spread of strains that challenge targeted molecular diagnostics. This motivates development of molecular diagnostics unreliant on primer conservation, and impels frequent WGS surveillance for variants that evade prevailing molecular diagnostics.
Collapse
|
8
|
Miotto P, Sorrentino R, De Giorgi S, Provvedi R, Cirillo DM, Manganelli R. Transcriptional regulation and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:990312. [PMID: 36118045 PMCID: PMC9480834 DOI: 10.3389/fcimb.2022.990312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial drug resistance is one of the major challenges to present and future human health, as the continuous selection of multidrug resistant bacteria poses at serious risk the possibility to treat infectious diseases in the near future. One of the infection at higher risk to become incurable is tuberculosis, due to the few drugs available in the market against Mycobacterium tuberculosis. Drug resistance in this species is usually due to point mutations in the drug target or in proteins required to activate prodrugs. However, another interesting and underexplored aspect of bacterial physiology with important impact on drug susceptibility is represented by the changes in transcriptional regulation following drug exposure. The main regulators involved in this phenomenon in M. tuberculosis are the sigma factors, and regulators belonging to the WhiB, GntR, XRE, Mar and TetR families. Better understanding the impact of these regulators in survival to drug treatment might contribute to identify new drug targets and/or to design new strategies of intervention.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano De Giorgi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
9
|
Merker M, Rasigade JP, Barbier M, Cox H, Feuerriegel S, Kohl TA, Shitikov E, Klaos K, Gaudin C, Antoine R, Diel R, Borrell S, Gagneux S, Nikolayevskyy V, Andres S, Crudu V, Supply P, Niemann S, Wirth T. Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis. Nat Commun 2022; 13:5105. [PMID: 36042200 PMCID: PMC9426364 DOI: 10.1038/s41467-022-32455-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis (TB) is the largest single contributor to human mortality due to antimicrobial resistance. A few major clades of the Mycobacterium tuberculosis complex belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia, show outstanding transnational distributions. Here, we determined factors underlying the emergence and epidemic spread of the W148 clade by genome sequencing and Bayesian demogenetic analyses of 720 isolates from 23 countries. We dated a common ancestor around 1963 and identified two successive epidemic expansions in the late 1980s and late 1990s, coinciding with major socio-economic changes in the post-Soviet Era. These population expansions favored accumulation of resistance mutations to up to 11 anti-TB drugs, with MDR evolving toward additional resistances to fluoroquinolones and second-line injectable drugs within 20 years on average. Timescaled haplotypic density analysis revealed that widespread acquisition of compensatory mutations was associated with transmission success of XDR strains. Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene locus, and incipient recurrent emergence of prpR mutation-mediated drug tolerance was detected. The outstanding genetic arsenal of this geographically widespread M/XDR strain clade represents a “perfect storm” that jeopardizes the successful introduction of new anti-M/XDR-TB antibiotic regimens. An outbreak of the multidrug-resistant Mycobacterium tuberculosis lineage W148 has spread widely across Russia, Central Asia and Europe. Here, the authors use whole genome sequences of ~700 isolates of this lineage collected over ~20 years to analyze its spread, evolution of drug resistance, and impact of compensatory mutations.
Collapse
Affiliation(s)
- Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.,Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Jean-Philippe Rasigade
- EPHE, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Maxime Barbier
- EPHE, PSL University, Paris, France.,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Helen Cox
- Division of Medical Microbiology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Silke Feuerriegel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Egor Shitikov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Kadri Klaos
- SA TUH United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany.,Lung Clinic Grosshansdorf, German Center for Lung Research (DZL), Airway Research Center North (ARCN), 22927, Großhansdorf, Germany
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Sönke Andres
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Valeriu Crudu
- National TB Reference Laboratory, Institute of Phthisiopneumology, Chisinau, Moldova
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. .,German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Thierry Wirth
- EPHE, PSL University, Paris, France. .,Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
| |
Collapse
|