1
|
Snaith AE, Moran RA, Hall RJ, Casey A, Ratcliffe L, van Schaik W, Whitehouse T, McNally A. Longitudinal genomic surveillance of a UK intensive care unit shows a lack of patient colonisation by multi-drug-resistant Gram-negative bacterial pathogens. Microb Genom 2024; 10:001314. [PMID: 39494554 PMCID: PMC11533117 DOI: 10.1099/mgen.0.001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Vulnerable patients in an intensive care unit (ICU) setting are at high risk of infection from bacteria including gut-colonising Escherichia coli and Klebsiella species. Complex ICU procedures often depend on successful antimicrobial treatment, underscoring the importance of understanding the extent of patient colonisation by multi-drug-resistant organisms (MDROs) in large UK ICUs. Previous work on ICUs globally uncovered high rates of colonisation by transmission of MDROs, but the situation in UK ICUs is less understood. Here, we investigated the diversity and antibiotic resistance gene (ARG) carriage of bacteria present in one of the largest UK ICUs at the Queen Elizabeth Hospital Birmingham (QEHB), focusing primarily on E. coli as both a widespread commensal and a globally disseminated multi-drug-resistant pathogen. Samples were taken during highly restrictive coronavirus disease 2019 (COVID-19) control measures from May to December 2021. Whole-genome and metagenomic sequencing were used to detect and report strain-level colonisation of patients, focusing on E. coli sequence types (STs), their colonisation dynamics and antimicrobial resistance gene carriage. We found a lack of multi-drug resistance (MDR) in the QEHB. Only one carbapenemase-producing organism was isolated, a Citrobacter carrying bla KPC-2. There was no evidence supporting the spread of this strain, and there was little evidence overall of nosocomial acquisition or circulation of colonising E. coli. Whilst 22 different E. coli STs were identified, only 1 strain of the pandemic ST131 lineage was isolated. This ST131 strain was non-MDR and was found to be a clade A strain, associated with low levels of antibiotic resistance. Overall, the QEHB ICU had very low levels of pandemic or MDR strains, a result that may be influenced in part by the strict COVID-19 control measures in place at the time. Employing some of these infection prevention and control measures where reasonable in all ICUs might therefore assist in maintaining low levels of nosocomial MDR.
Collapse
Affiliation(s)
- Ann E. Snaith
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert A. Moran
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anna Casey
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Liz Ratcliffe
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tony Whitehouse
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alan McNally
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Zhu J, Chen T, Ju Y, Dai J, Zhuge X. Transmission Dynamics and Novel Treatments of High Risk Carbapenem-Resistant Klebsiella pneumoniae: The Lens of One Health. Pharmaceuticals (Basel) 2024; 17:1206. [PMID: 39338368 PMCID: PMC11434721 DOI: 10.3390/ph17091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The rise of antibiotic resistance and the dwindling antimicrobial pipeline have emerged as significant threats to public health. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a global threat, with limited options available for targeted therapy. The CRKP has experienced various changes and discoveries in recent years regarding its frequency, transmission traits, and mechanisms of resistance. In this comprehensive review, we present an in-depth analysis of the global epidemiology of K. pneumoniae, elucidate resistance mechanisms underlying its spread, explore evolutionary dynamics concerning carbapenem-resistant hypervirulent strains as well as KL64 strains of K. pneumoniae, and discuss recent therapeutic advancements and effective control strategies while providing insights into future directions. By going through up-to-date reports, we found that the ST11 KL64 CRKP subclone with high risk demonstrated significant potential for expansion and survival benefits, likely due to genetic influences. In addition, it should be noted that phage and nanoparticle treatments still pose significant risks for resistance development; hence, innovative infection prevention and control initiatives rooted in One Health principles are advocated as effective measures against K. pneumoniae transmission. In the future, further imperative research is warranted to comprehend bacterial resistance mechanisms by focusing particularly on microbiome studies' application and implementation of the One Health strategy.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Taoyu Chen
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
3
|
Porter L, Sultan O, Mitchell BG, Jenney A, Kiernan M, Brewster DJ, Russo PL. How long do nosocomial pathogens persist on inanimate surfaces? A scoping review. J Hosp Infect 2024; 147:25-31. [PMID: 38447803 DOI: 10.1016/j.jhin.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Healthcare hygiene plays a crucial role in the prevention of healthcare-associated infections. Patients admitted to a room where the previous occupant had a multi-drug-resistant bacterial infection are at an increased risk of colonization and infection with the same organism. A 2006 systematic review by Kramer et al. found that certain pathogens can survive for months on dry surfaces. The aim of this review is to update Kramer et al.'s previous review and provide contemporary data on the survival of pathogens relevant to the healthcare environment. We systematically searched Ovid MEDLINE, CINAHL and Scopus databases for studies that described the survival time of common nosocomial pathogens in the environment. Pathogens included in the review were bacterial, viral, and fungal. Studies were independently screened against predetermined inclusion/exclusion criteria by two researchers. Conflicts were resolved by one of two senior researchers. A spreadsheet was developed for the data extraction. The search identified 1736 studies. Following removal of duplicates and application of the search criteria, the synthesis of results from 62 included studies were included. 117 organisms were reported. The longest surviving organism reported was Klebsiella pneumoniae which was found to have persisted for 600 days. Common pathogens of concern to infection prevention and control, can survive or persist on inanimate surfaces for months. This data supports the need for a risk-based approach to cleaning and disinfection practices, accompanied by appropriate training, audit and feedback which are proven to be effective when adopted in a 'bundle' approach.
Collapse
Affiliation(s)
- L Porter
- Department of Nursing Research, Cabrini Health, Malvern, Australia; School of Medicine, Monash University, Clayton, Australia
| | - O Sultan
- Department of Nursing Research, Cabrini Health, Malvern, Australia; School of Medicine, Monash University, Clayton, Australia
| | - B G Mitchell
- School of Nursing, Avondale University, Wahroonga, Australia; School of Nursing and Midwifery, Monash University, Clayton, Australia; School of Nursing and Midwifery, University of Newcastle, Callaghan, Australia
| | - A Jenney
- Microbiology Unit, Alfred Health, Prahran, Australia
| | - M Kiernan
- Richard Wells Research Centre, University of West London, London, UK
| | - D J Brewster
- Central Clinical School, Monash University, Clayton, Australia; Intensive Care Unit, Cabrini Health, Malvern, Australia
| | - P L Russo
- Department of Nursing Research, Cabrini Health, Malvern, Australia; School of Medicine, Monash University, Clayton, Australia; School of Nursing, Avondale University, Wahroonga, Australia.
| |
Collapse
|
4
|
Wang J, Feng Y, Zong Z. The Origins of ST11 KL64 Klebsiella pneumoniae: a Genome-Based Study. Microbiol Spectr 2023; 11:e0416522. [PMID: 36971550 PMCID: PMC10101065 DOI: 10.1128/spectrum.04165-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major severe threat for human health, and its spread is largely driven by a few dominant lineages defined by sequence types (ST) and capsular (KL) types. ST11-KL64 is one such dominant lineage that is particularly common in China but also has a worldwide distribution. However, the population structure and origin of ST11-KL64 K. pneumoniae remain to be determined. We retrieved all K. pneumoniae genomes (n = 13,625, as of June 2022) from NCBI, comprising 730 ST11-KL64 strains. Phylogenomic analysis of core-genome single-nucleotide polymorphisms identified two major clades (I and II) plus an additional singleton of ST11-KL64. We performed dated ancestral reconstruction analysis using BactDating and found that clade I likely emerged in 1989 in Brazil, while clade II emerged around 2008 in eastern China. We then investigated the origin of the two clades and the singleton using a phylogenomic approach combined with analysis of potential recombination regions. We found that ST11-KL64 clade I is likely a hybrid with 91.2% (ca. 4.98 Mb) of the chromosome derived from the ST11-KL15 lineage and 8.8% (483 kb) acquired from ST147-KL64. In contrast, ST11-KL64 clade II was derived from ST11-KL47 with swapping of a 157-kb region (3% of the chromosome) containing the capsule gene cluster with clonal complex 1764 (CC1764)-KL64. The singleton also evolved from ST11-KL47 but with swapping of a 126-kb region with ST11-KL64 clade I. In conclusion, ST11-KL64 is a heterogenous lineage comprising two major clades and a singleton with different origins that emerged in different countries at different time points. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a severe threat globally and is associated with increased lengths of hospital stay and high mortality in affected patients. The spread of CRKP is largely driven by a few dominant lineages, including ST11-KL64, the dominant type in China with a worldwide distribution. Here, we tested the hypothesis that ST11-KL64 K. pneumoniae is a single genomic lineage by performing a genome-based study. However, we found that ST11-KL64 comprises a singleton and two major clades, which emerged in different countries in different years. In particular, the two clades and the singleton have different origins and acquired the KL64 capsule gene cluster from various sources. Our study underscores that the chromosomal region containing the capsule gene cluster is a hot spot of recombination in K. pneumoniae. This represents a major evolutionary mechanism employed by some bacteria for rapid evolution with novel clades that accommodate stress for survival.
Collapse
Affiliation(s)
- Junna Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
5
|
Moran RA, Baomo L, Doughty EL, Guo Y, Ba X, van Schaik W, Zhuo C, McNally A. Extended-Spectrum β-Lactamase Genes Traverse the Escherichia coli Populations of Intensive Care Unit Patients, Staff, and Environment. Microbiol Spectr 2023; 11:e0507422. [PMID: 36916926 PMCID: PMC10100714 DOI: 10.1128/spectrum.05074-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Over a 3-month period, we monitored the population of extended-spectrum β-lactam-resistant Escherichia coli (ESBL-EC) associated with the patients, staff, and environment of an intensive care unit (ICU) in Guangzhou, China. Thirty-four clinical isolates were obtained from the same hospital 12 months later. A total of 165 isolates were characterized and whole-genome sequenced, with 24 isolates subjected to long-read sequencing. The diverse population included representatives of 59 different sequence types (STs). ICU patient and environmental isolates were largely distinct from staff isolates and clinical isolates. We observed five instances of highly similar isolates (0 to 13 single nucleotide polymorphisms [SNPs]) being obtained from different patients or bed unit environments. ESBL resistance in this collection was largely conferred by blaCTX-M genes, which were found in 96.4% of all isolates. The contexts of blaCTX-M genes were diverse, situated in multiple chromosomal positions and in various plasmids. We identified blaCTX-M-bearing plasmid lineages that were present in multiple STs across the surveillance, staff, and clinical collections. Closer examination of ISEcp1-blaCTX-M transposition units shed light on the dynamics of their transmission, with evidence for the acquisition of chromosomal copies of blaCTX-M genes from specific plasmid lineages and for the movement of blaCTX-M-55 from a ST1193 chromosome to a small mobilizable plasmid. A carbapenem-resistant ST167 strain isolated from a patient that had been treated with meropenem and piperacillin-tazobactam contained seven copies of blaCMY-146, which appears to have been amplified by IS1. Our data revealed limited persistence and movement of ESBL-EC strains in the ICU environment, but we observed circulating plasmid lineages playing an essential and ongoing role in shaping the cephalosporin-resistance landscape in the population examined. IMPORTANCE ESBL resistance significantly impacts clinical management of E. coli infections in hospitals globally. It is important to understand the structures of ESBL-EC populations carried by hospital patients and staff, their capacity to persist in hospital environments, and the dynamics of mobile genes that drive the spread of ESBL resistance. In our 3-month study, ESBL-EC strains found in the ICU environment were strongly associated with patient carriage but distinct from strains found in staff. However, plasmid lineages carrying blaCTX-M genes were found across the ICU populations and in a collection of clinical isolates obtained 1 year later. By examining their content and contexts, we have traced the recent histories of chromosomal and plasmid-borne ISEcp1-blaCTX-M transposition units in the ICU population. This information allowed us to implicate specific plasmid lineages in the acquisition of chromosomal blaCTX-M genes, even when the plasmids were no longer present, and to detect recent transposition of blaCTX-M-55 from a chromosome to a mobilizable plasmid. Similar high-resolution approaches to the study of mobile genetic elements will be essential if the transmission routes associated with the spread of ESBL resistance are to be understood and subjected to interventions.
Collapse
Affiliation(s)
- Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Liu Baomo
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Emma L. Doughty
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Competitive Transmission of Carbapenem-Resistant Klebsiella pneumoniae in a Newly Opened Intensive Care Unit. mSystems 2022; 7:e0079922. [PMID: 36445111 PMCID: PMC9764986 DOI: 10.1128/msystems.00799-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We conducted a 6-month prospective study in a newly opened ICU for high-resolution tracking of carbapenem-resistant Klebsiella pneumoniae (CRKP) through environmental surveillance, patient screening, and genome sequencing. Among all ICU patients (n = 348) screened, 3.5% carried CRKP on admission and 16.3% acquired CRKP thereafter. CRKP was not detected in the environment until 10 weeks and was then isolated from 98 of 2,989 environmental samples (3.3%). The first CRKP isolate from rectal swabs (n = 37) and the first clinical isolate (n = 8) of each patient as well as the 98 isolates from environmental were subjected to whole-genome sequencing. The 143 CRKP isolates from patients and environment samples were assigned to four sequence types, with ST11 dominating (95.8%) and further divided into 14 clones, suggesting introduction of multiple clones. Subsequent CRKP transmission was complex and dynamic with 10 clones found in multiple patients and seven also detected in the environment. Two particular ST11 clones caused extensive (≥5 rooms) and persistent (≥10 weeks) environmental contamination. Both clones were associated with patients who carried CRKP throughout their prolonged ICU stay. Such "super-contaminators" are a priority for isolation and environmental surveillance. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a global challenge for human health. In health care settings, patients have frequent interactions with other patients and the environment, rendering challenges for untangling the introduction and transmission of CRKP. We conducted a prospective surveillance study in a newly opened ICU for high-resolution tracking of CRKP. Our study demonstrated the dynamic, complicated transmission of CRKP and has important findings that may help to curb its spread in health care settings. First, compliance with basic measures such as routine environment cleaning and postdischarge terminal cleaning is needed to minimize the environmental contamination-driven spread. Second, active screening could demonstrate the scale of the problem, and room transfer of patients with CRKP should be prohibited whenever possible. Third, the priority for single-room isolation should be given to patients with prolonged carriage of CRKP, especially in resource-limited settings. Good infection control practice lays a foundation for tackling multidrug-resistant organisms like CRKP.
Collapse
|
7
|
Chi X, Meng X, Xiong L, Chen T, Zhou Y, Ji J, Zheng B, Xiao Y. Small wards in the ICU: a favorable measure for controlling the transmission of carbapenem-resistant Klebsiella pneumoniae. Intensive Care Med 2022; 48:1573-1581. [PMID: 36129475 PMCID: PMC9592670 DOI: 10.1007/s00134-022-06881-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Carbapenem-resistant Klebsiella pneumoniae (CRKP) is one of the leading causes of healthcare-associated infections (HAIs) and is particularly pervasive in intensive care units (ICUs). This study takes ICU layout as the research object, and integrates clinical data and bacterial genome analysis to clarify the role of separate, small wards within the ICU in controlling the transmission of CRKP. METHODS This study prospectively observed the carriage and spread of CRKP from a long-term in-hospital patient (hereafter called the Patient) colonized with CRKP in the gut and located in a separate, small ward within the ICU. The study also retrospectively investigated CRKP-HAIs in the same ICU. The relationship and transmission between CRKP isolates from the Patient and HAI events in the ICU were explored with comparative genomics. RESULTS In this study, 65 CRKP-HAI cases occurred during the investigation period. Seven CRKP-HAI outbreaks were also observed. A total of 95 nonrepetitive CRKP isolates were collected, including 32 strains from the Patient in the separate small ward. Phylogenetic analysis based on core genome single-nucleotide polymorphism (cgSNP) showed that there were five possible CRKP clonal transmission events and two clonal outbreaks (A1, A2) during the study. CRKP strains from the Patient did not cause CRKP between-patient transmission or outbreaks in the ICU during the 5-year study period. CONCLUSION The presence of a long-term hospitalized patient carrying CRKP and positioned in a separate, small ward did not lead to CRKP transmission or infection outbreaks in the ICU. Combining a small-ward ICU layout with normative HAI control measures for multidrug-resistant pathogen infection was effective in reducing CRKP transmission.
Collapse
Affiliation(s)
- Xiaohui Chi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Xiaohua Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Luying Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Yanzi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003, China.
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Li L, Wang R, Qiao D, Zhou M, Jin P. Tracking the Outbreak of Carbapenem-Resistant Klebsiella pneumoniae in an Emergency Intensive Care Unit by Whole Genome Sequencing. Infect Drug Resist 2022; 15:6215-6224. [PMID: 36324669 PMCID: PMC9621004 DOI: 10.2147/idr.s386385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose The spread of carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a great threat to human health, especially in the intensive care unit. The aim of this study was to identify the origin and transmission route of a CRKP outbreak in an emergency intensive care unit (EICU), so as to provide prevention and control strategies for CRKP outbreak. Methods Between Mar and Jun 2018, 10 CRKP isolates from 5 patients in the EICU ward of Shanghai Ruijin hospital north were collected. Modified carbapenem inactivation method (mCIM) and whole-genome sequencing (WGS) were performed on all 10 CRKP isolates. By integrating the genomic and epidemiological data of our isolates and 9 CRKP isolates from an outbreak in another hospital, a putative transmission map was constructed. Results All 10 outbreak strains were carbapenemase positive in mCIM and belonged to the sequence type 11 (ST11) clone, harbored a set of resistance genes and virulence genes. The phylogenetic tree of CRKP isolates based on two outbreaks revealed that the initial isolate A1 in our EICU ward belonged to one branch of isolates in another hospital, this introductive isolate evolved and caused a subsequent outbreak in our EICU. Conclusion Integration of genomic and epidemiological data can yield a clear transmission map of CRKP outbreak. Monitoring the rapid evolution of CRKP at the early stage of outbreak, CRKP monitoring after patients are discharged, active surveillance of newly admitted patients, environmental hygiene and efficient antibiotic treatment may be the key to prevent and control of CRKP outbreak.
Collapse
Affiliation(s)
- Li Li
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Renying Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Dan Qiao
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Min Zhou
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China
| | - Peipei Jin
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People’s Republic of China,Correspondence: Peipei Jin, Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, 999 Xiwang Road, Shanghai, 201801, People’s Republic of China, Tel +86-21-67888999, Fax +86-21-64333548, Email
| |
Collapse
|
9
|
Hu J, Shuai W, Sumner JT, Moghadam AA, Hartmann EM. Clinically relevant pathogens on surfaces display differences in survival and transcriptomic response in relation to probiotic and traditional cleaning strategies. NPJ Biofilms Microbiomes 2022; 8:72. [PMID: 36123373 PMCID: PMC9485146 DOI: 10.1038/s41522-022-00335-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/02/2022] [Indexed: 02/05/2023] Open
Abstract
Indoor surfaces are paradoxically presumed to be both colonized by pathogens, necessitating disinfection, and "microbial wastelands." In these resource-poor, dry environments, competition and decay are thought to be important drivers of microbial community composition. However, the relative contributions of these two processes have not been specifically evaluated. To bridge this knowledge gap, we used microcosms to evaluate whether interspecies interactions occur on surfaces. We combined transcriptomics and traditional microbiology techniques to investigate whether competition occurred between two clinically important pathogens, Acinetobacter baumannii and Klebsiella pneumoniae, and a probiotic cleaner containing a consortium of Bacillus species. Probiotic cleaning seeks to take advantage of ecological principles such as competitive exclusion, thus using benign microorganisms to inhibit viable pathogens, but there is limited evidence that competitive exclusion in fact occurs in environments of interest (i.e., indoor surfaces). Our results indicate that competition in this setting has a negligible impact on community composition but may influence the functions expressed by active organisms. Although Bacillus spp. remained viable on surfaces for an extended period of time after application, viable colony forming units (CFUs) of A. baumannii recovered following exposure to a chemical-based detergent with and without Bacillus spp. showed no statistical difference. Similarly, for K. pneumoniae, there were small statistical differences in CFUs between cleaning scenarios with or without Bacillus spp. in the chemical-based detergent. The transcriptome of A. baumannii with and without Bacillus spp. exposure shared a high degree of similarity in overall gene expression, but the transcriptome of K. pneumoniae differed in overall gene expression, including reduced response in genes related to antimicrobial resistance. Together, these results highlight the need to fully understand the underlying biological and ecological mechanisms for community assembly and function on indoor surfaces, as well as having practical implications for cleaning and disinfection strategies for infection prevention.
Collapse
Affiliation(s)
- Jinglin Hu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jack T Sumner
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Anahid A Moghadam
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
10
|
Zhang Y, Yu S, Chen C, Sun F, Zhou L, Yao H, Hu J, Li S, Ai J, Jiang N, Wang J, Liu Q, Jin J, Zhang W. Comprehensive Surveillance and Sampling Reveal Carbapenem-Resistant Organism Spreading in Tertiary Hospitals in China. Infect Drug Resist 2022; 15:4563-4573. [PMID: 35999831 PMCID: PMC9393017 DOI: 10.2147/idr.s367398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Carbapenem-resistant organisms (CROs) have posed a great threat to antibiotic use and induce multi-drug resistance. Contamination of the hospital environment and infection of healthcare workers (HCWs) are reported as sources of nosocomial infections. Here, we performed a comprehensive environment sampling and timely epidemiological investigation during outbreaks to investigate the role of the environment and HCWs in CRO transmission. Patients and Methods We enrolled carbapenem-resistant organism outbreaks in ICU-1 of Huashan Hospital from January 2019 to March 2019, and ICU-2 located at west branch of Huashan Hospital from October 2019 to November 2019. Carbapenem-resistant Klebsiella pneumoniae (CRKP) and carbapenem-resistant Acinetobacter baumannii (CRAB) isolates were collected from the patients. We performed a real-time comprehensive environmental and HCW sampling in the two ICUs. Isolated strains from patients and the positive colonies from the screening were sent for whole-genome sequencing. Finally, phylogenetic trees were constructed. Results CRAB and CRKP outbreaks simultaneously occurred in ICU-1; the outbreak involved 13 patients. Meanwhile, the CRKP outbreak in ICU-2 included 11 patients. Twelve out of 146 environment and HCWs samples in ICU-1 were carbapenem-resistant bacteria, including six CRKP and six CRAB strains. For ICU-2, hospital surfaces and HCWs were negative for CRKP. Phylogenetic analyses showed that CRKP strains in ICU-1 were classified into two clades: Clade 1 and Clade 2, sharing a high similarity of isolates from the environment and HCWs. The same phenomenon was observed in CRAB. Conclusion A timely comprehensive sampling combined with genome-based investigation may aid in tracking the transmission route of and controlling the infections. The environment and HCWs could be contaminated during CRO transmission, which calls for strengthened prevention and control measures.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglei Yu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Sun
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haijun Yao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Hu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shirong Li
- Department of Clinical Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Jiang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qihui Liu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jialin Jin
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Epidemiological Characteristics of OXA-232-Producing Carbapenem-Resistant Klebsiella pneumoniae Strains Isolated during Nosocomial Clonal Spread Associated with Environmental Colonization. Microbiol Spectr 2022; 10:e0257221. [PMID: 35730968 PMCID: PMC9430510 DOI: 10.1128/spectrum.02572-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Here, a program was designed to surveil the colonization and associated infection of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) (OXA-232-CRKP) in an intensive care unit (ICU) and to describe the epidemiological characteristics during surveillance. Samples were sourced from patient and environment colonization sites in the ICU from August to December 2019. During the surveillance, 106 OXA-232-CRKP strains were isolated from 8,656 samples of colonization sites, with an average positive rate of 1.22%. The rate from patient colonization sites was 3.59% (60/1,672 samples), over 5 times higher than that of the environment (0.66% [46/6,984 samples]). Rectal swabs and ventilator-related sites had the highest positive rates among patient and environment colonization sites, respectively. Six of the 15 patients who had OXA-232-CRKP at colonization sites suffered from OXA-232-CRKP-related infections. Patients could obtain OXA-232-CRKP from the environment, while long-term patient colonization was mostly accompanied by environmental colonization with subsequent infection. Antimicrobial susceptibility testing presented similar resistance profiles, in which all isolates were resistant to ertapenem but showed different levels of resistance to meropenem and imipenem. Whole-genome sequencing and single-nucleotide polymorphism (SNP) analysis suggested that all OXA-232-CRKP isolates belonged to the sequence type 15 (ST15) clone and were divided into two clades with 0 to 45 SNPs, sharing similar resistance genes, virulence genes, and plasmid types, indicating that the wide dissemination of OXA-232-CRKP between the environment and patients was due to clonal spread. The strains all contained β-lactam resistance genes, including blaOXA-232, blaCTX-M-15, and blaSHV-106, and 75.21% additionally carried blaTEM-1. In brief, wide ST15 clonal spread and long-term colonization of OXA-232-CRKP between patients and the environment were observed, with microevolution and subsequent infection. IMPORTANCE OXA-232 is a variant of OXA-48 carbapenemase, which has been increasingly reported in nosocomial outbreaks in ICUs. However, the OXA-232-CRKP transmission relationship between the environment and patients in ICUs was still not clear. Our study demonstrated the long-term colonization of OXA-232-CRKP in the ICU environment, declared that the colonization was a potential risk to ICU patients, and revealed the possible threat that this OXA-232-CRKP clone would bring to public health. The wide dissemination of OXA-232-CRKP between the environment and patients was due to ST15 clonal spread, which presented a multidrug-resistant profile and carried disinfectant resistance genes and virulence clusters, posing a challenge to infection control. The study provided a basis for environmental disinfection, including revealing common environmental colonization sites of OXA-232-CRKP and suggesting appropriate usage of disinfectants to prevent the development of disinfectant resistance.
Collapse
|
12
|
Hu H, Lou Y, Feng H, Tao J, Shi W, Ni S, Pan Q, Ge T, Shen P, Zhong Z, Xiao Y, Qu T. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolates Among Intensive Care Unit Patients and Environment. Infect Drug Resist 2022; 15:1821-1829. [PMID: 35444432 PMCID: PMC9013810 DOI: 10.2147/idr.s349895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/26/2022] [Indexed: 12/31/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Hangbin Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yifeng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Infectious Disease Department, Sanmen People’s Hospital, Taizhou, Zhejiang, People’s Republic of China
| | - Haiting Feng
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jingjing Tao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuangling Ni
- Infectious Disease Department, Lishui People’s Hospital, Lishui, Zhejiang, People’s Republic of China
| | - Qunying Pan
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tianxiang Ge
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Zifeng Zhong
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Infection Control Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Correspondence: Tingting Qu; Yonghong Xiao, Tel +86 571 87236673, Email ;
| |
Collapse
|