1
|
Hirai J, Katakura S, Kasai H, Nagai S. Ecological interactions between marine RNA viruses and planktonic copepods. Commun Biol 2024; 7:1507. [PMID: 39562834 DOI: 10.1038/s42003-024-07189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
The interactions between zooplankton and viruses, which have been overlooked despite their crucial roles in marine ecosystems, are investigated in the copepod Pseudocalanus newmani. Copepod transcriptome data reveal four novel RNA viruses and weekly zooplankton samplings detect all viruses with different prevalence peaks during low-abundance periods of P. newmani. In addition to water temperature and food quality, our results suggest that marine virus is one of the factors controlling copepod population dynamics. Gene expression analysis indicates possible increased viral replication and decreased copepod movement in P. newmani with the Picorna-like virus, which is closely related to phytoplankton viruses, and metabarcoding diet analysis detects diatoms as P. newmani's major prey. Viral-like particles are observed in the gut contents of copepods during the high prevalence of this virus, suggesting infected copepod prey may affect copepod physiology. These results show that investigating zooplankton-virus interactions can provide a better understanding of marine ecosystems.
Collapse
Affiliation(s)
- Junya Hirai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan.
| | | | - Hiromi Kasai
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kushiro, Japan
| | - Satoshi Nagai
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
2
|
Toner CM, Hoitsma NM, Weerawarana S, Luger K. Characterization of Medusavirus encoded histones reveals nucleosome-like structures and a unique linker histone. Nat Commun 2024; 15:9138. [PMID: 39443461 PMCID: PMC11500106 DOI: 10.1038/s41467-024-53364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The organization of DNA into nucleosomes is a ubiquitous and ancestral feature that was once thought to be exclusive to the eukaryotic domain of life. Intriguingly, several representatives of the Nucleocytoplasmic Large DNA Viruses (NCLDV) encode histone-like proteins that in Melbournevirus were shown to form nucleosome-like particles. Medusavirus medusae (MM), a distantly related giant virus, encodes all four core histone proteins and, unique amongst most giant viruses, a putative acidic protein with two domains resembling eukaryotic linker histone H1. Here, we report the structure of nucleosomes assembled with MM histones and highlight similarities and differences with eukaryotic and Melbournevirus nucleosomes. Our structure provides insight into how variations in histone tail and loop lengths are accommodated within the context of the nucleosome. We show that MM-histones assemble into tri-nucleosome arrays, and that the putative linker histone H1 does not function in chromatin compaction. These findings expand our limited understanding of chromatin organization by virus-encoded histones.
Collapse
Affiliation(s)
- Chelsea M Toner
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
| | - Nicole M Hoitsma
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sashi Weerawarana
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Queiroz VF, Tatara JM, Botelho BB, Rodrigues RAL, Almeida GMDF, Abrahao JS. The consequences of viral infection on protists. Commun Biol 2024; 7:306. [PMID: 38462656 PMCID: PMC10925606 DOI: 10.1038/s42003-024-06001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Protists encompass a vast widely distributed group of organisms, surpassing the diversity observed in metazoans. Their diverse ecological niches and life forms are intriguing characteristics that render them valuable subjects for in-depth cell biology studies. Throughout history, viruses have played a pivotal role in elucidating complex cellular processes, particularly in the context of cellular responses to viral infections. In this comprehensive review, we provide an overview of the cellular alterations that are triggered in specific hosts following different viral infections and explore intricate biological interactions observed in experimental conditions using different host-pathogen groups.
Collapse
Affiliation(s)
- Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Miranda Tatara
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bruna Barbosa Botelho
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Jonatas Santos Abrahao
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Fukaya S, Masuda L, Takemura M. Analysis of Morphological Changes in the Nucleus and Vacuoles of Acanthamoeba castellanii following Giant Virus Infection. Microbiol Spectr 2023; 11:e0418222. [PMID: 36943052 PMCID: PMC10100661 DOI: 10.1128/spectrum.04182-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Acanthamoeba castellanii medusavirus is a member of the phylum Nucleocytoviricota, also known as giant viruses, and has a unique strategy of infecting Acanthamoeba castellanii and replicating viral genes in the host nucleus. Here, we show time series changes in the intracellular morphology, including the nucleus, of host cells infected with four types of giant viruses, including medusavirus, using time-lapse phase-contrast microscopy and image analysis. We updated our phase-contrast-based kinetic analysis algorithm for amoebae (PKA3) to use multiple microscopic images with different focus positions to allow a more detailed analysis of their intracellular structures. Image analysis using PKA3 revealed that as medusavirus infection progressed, the host nucleus increased in size and the number of vacuoles decreased. In addition, infected host cells are known to become smaller and rounder at later stages of infection, but here they were found to be larger than uninfected cells at earlier stages. These results suggested that the propagation mechanism of medusavirus includes the formation of empty virus particles in the host cytoplasm, packaging of the viral genome replicated in the host nucleus, and then the release of viral particles. IMPORTANCE In this study, we quantitatively revealed how long the increase in host cell size or the increase in host nucleus size occurs after infection with giant viruses, especially medusavirus. To understand the underlying mechanism, we performed image analysis and determined that the host cell size increased at approximately 6 h postinfection (hpi) and the host nucleus enlarged at approximately 22 hpi, pointing to the importance of biochemical experiments. In addition, we showed that the intracellular structures could be quantitatively analyzed using multiple phase-contrast microscopy images with different focus positions at the same time point. Hence, morphological analyses of intracellular structures using phase-contrast microscopy, which have wide applications in live-cell observations, may be useful in studying various organisms that infect or are symbiotic with A. castellanii.
Collapse
Affiliation(s)
- Sho Fukaya
- Department of Applied Information Engineering, Faculty of Engineering, Suwa University of Science, Chino, Nagano, Japan
- Laboratory of Biology, Institute of Arts and Sciences, Tokyo University of Science, Shinjuku, Tokyo, Japan
| | - Lisa Masuda
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Shinjuku, Tokyo, Japan
| | - Masaharu Takemura
- Laboratory of Biology, Institute of Arts and Sciences, Tokyo University of Science, Shinjuku, Tokyo, Japan
- Laboratory of Biology, Graduate School of Mathematics and Science Education, Tokyo University of Science, Shinjuku, Tokyo, Japan
| |
Collapse
|
5
|
Widespread Distribution and Evolution of Poxviral Entry-Fusion Complex Proteins in Giant Viruses. Microbiol Spectr 2023:e0494422. [PMID: 36912656 PMCID: PMC10100723 DOI: 10.1128/spectrum.04944-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Poxviruses are known to encode a set of proteins that form an entry-fusion complex (EFC) to mediate virus entry. However, the diversity, evolution, and origin of these EFC proteins remain poorly understood. Here, we identify the EFC protein homologs in poxviruses and other giant viruses of the phylum Nucleocytoviricota. The 11 EFC genes are present in almost all poxviruses, with the two smallest, G3 and O3, being absent in Entomopoxvirinae and basal lineages of Chordopoxvirinae. Five of the EFC genes are further grouped into two families, A16/G9/J5 and F9/L1, which are widely distributed across other major lineages of Nucleocytoviricota, including metagenome-assembled genomes, but are generally absent in viruses infecting algae or nonamoebozoan heterotrophic protists. The A16/G9/J5 and F9/L1 families cooccur, mostly as single copies, in 93% of the non-Poxviridae giant viruses that have at least one of them. Distribution and phylogenetic patterns suggest that both families originated in the ancestor of Nucleocytoviricota. In addition to the Poxviridae genes, homologs from each of the other Nucleocytoviricota families are largely clustered together, suggesting their ancient presence and vertical inheritance. Despite deep sequence divergences, we observed noticeable conservation of cysteine residues and predicted structures between EFC proteins of Poxviridae and other families. Overall, our study reveals widespread distribution of these EFC protein homologs beyond poxviruses, implies the existence of a conserved membrane fusion mechanism, and sheds light on host range and ancient evolution of Nucleocytoviricota. IMPORTANCE Fusion between virus and host membranes is critical for viruses to release genetic materials and to initiate infection. Whereas most viruses use a single protein for membrane fusion, poxviruses employ a multiprotein entry-fusion complex (EFC). We report that two major families of the EFC proteins are widely distributed within the virus phylum Nucleocytoviricota, which includes poxviruses and other double-stranded (dsDNA) giant viruses that infect animals, amoebozoans, algae, and various microbial eukaryotes. Each of these two protein families is structurally conserved, traces its origin to the root of Nucleocytoviricota, was passed down to the major subclades of Nucleocytoviricota, and is retained in most giant viruses known to infect animals and amoebozoans. The EFC proteins therefore represent a potential mechanism for virus entry in diverse giant viruses. We hypothesize that they may have facilitated the infection of an animal/amoebozoan-like host by the last Nucleocytoviricota common ancestor.
Collapse
|
6
|
Talbert PB, Armache KJ, Henikoff S. Viral histones: pickpocket's prize or primordial progenitor? Epigenetics Chromatin 2022; 15:21. [PMID: 35624484 PMCID: PMC9145170 DOI: 10.1186/s13072-022-00454-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
The common histones H2A, H2B, H3, and H4 are the characteristic components of eukaryotic nucleosomes, which function to wrap DNA and compact the genome as well as to regulate access to DNA for transcription and replication in all eukaryotes. In the past two decades, histones have also been found to be encoded in some DNA viruses, where their functions and properties are largely unknown, though recently histones from two related viruses have been shown to form nucleosome-like structures in vitro. Viral histones can be highly similar to eukaryotic histones in primary sequence, suggesting they have been recently picked up from eukaryotic hosts, or they can be radically divergent in primary sequence and may occur as conjoined histone doublets, triplets, or quadruplets, suggesting ancient origins prior to the divergence of modern eukaryotes. Here, we review what is known of viral histones and discuss their possible origins and functions. We consider how the viral life cycle may affect their properties and histories, and reflect on the possible roles of viruses in the origin of the nucleus of modern eukaryotic cells.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 550 First Ave, New York, NY, 10016, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.
| |
Collapse
|
7
|
Geballa-Koukoulas K, La Scola B, Blanc G, Andreani J. Diversity of Giant Viruses Infecting Vermamoeba vermiformis. Front Microbiol 2022; 13:808499. [PMID: 35602053 PMCID: PMC9116030 DOI: 10.3389/fmicb.2022.808499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of Acanthamoeba polyphaga mimivirus in 2003 using the free-living amoeba Acanthamoeba polyphaga caused a paradigm shift in the virology field. Twelve years later, using another amoeba as a host, i.e., Vermamoeba vermiformis, novel isolates of giant viruses have been discovered. This amoeba–virus relationship led scientists to study the evolution of giant viruses and explore the origins of eukaryotes. The purpose of this article is to review all the giant viruses that have been isolated from Vermamoeba vermiformis, compare their genomic features, and report the influence of these viruses on the cell cycle of their amoebal host. To date, viruses putatively belonging to eight different viral taxa have been described: 7 are lytic and 1 is non-lytic. The comparison of giant viruses infecting Vermamoeba vermiformis has suggested three homogenous groups according to their size, the replication time inside the host cell, and the number of encoding tRNAs. This approach is an attempt at determining the evolutionary origins and trajectories of the virus; therefore, more giant viruses infecting Vermamoeba must be discovered and studied to create a comprehensive knowledge on these intriguing biological entities.
Collapse
Affiliation(s)
- Khalil Geballa-Koukoulas
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
- *Correspondence: Khalil Geballa-Koukoulas,
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
| | - Guillaume Blanc
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Julien Andreani,
| |
Collapse
|
8
|
Watanabe R, Song C, Kayama Y, Takemura M, Murata K. Particle Morphology of Medusavirus Inside and Outside the Cells Reveals a New Maturation Process of Giant Viruses. J Virol 2022; 96:e0185321. [PMID: 35297671 PMCID: PMC9006890 DOI: 10.1128/jvi.01853-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Medusavirus, a giant virus, is phylogenetically closer to eukaryotes than the other giant viruses and has been recently classified as an independent species. However, details of its morphology and maturation process in host cells remain unclear. Here, we investigated the particle morphology of medusavirus inside and outside infected cells using conventional transmission electron microscopy (C-TEM) and cryo-electron microscopy (cryo-EM). The C-TEM of amoebae infected with the medusavirus showed four types of particles, i.e., pseudo-DNA-empty (p-Empty), DNA-empty (Empty), semi-DNA-full (s-Full), and DNA-full (Full). Time-dependent changes in the four types of particles and their intracellular localization suggested a new maturation process for the medusavirus. Viral capsids and viral DNAs are produced independently in the cytoplasm and nucleus, respectively, and only the empty particles located near the host nucleus can incorporate the viral DNA into the capsid. Therefore, all four types of particles were found outside the cells. The cryo-EM of these particles showed that the intact virus structure, covered with three different types of spikes, was preserved among all particle types, although with minor size-related differences. The internal membrane exhibited a structural array similar to that of the capsid, interacted closely with the capsid, and displayed open membrane structures in the Empty and p-Empty particles. The results suggest that these open structures in the internal membrane are used for an exchange of scaffold proteins and viral DNA during the maturation process. This new model of the maturation process of medusavirus provides insight into the structural and behavioral diversity of giant viruses. IMPORTANCE Giant viruses exhibit diverse morphologies and maturation processes. In this study, medusavirus showed four types of particle morphologies, both inside and outside the infected cells, when propagated in amoeba culture. Time-course analysis and intracellular localization of the medusavirus in the infected cells suggested a new maturation process via the four types of particles. Like the previously reported pandoravirus, the viral DNA of medusavirus is replicated in the host's nucleus. However, viral capsids are produced independently in the host cytoplasm, and only empty capsids near the nucleus can take up viral DNA. As a result, many immature particles were released from the host cell along with the mature particles. The capsid structure is well conserved among the four types of particles, except for the open membrane structures in the empty particles, suggesting that they are used to exchange scaffold proteins for viral DNAs. These findings indicate that medusavirus has a unique maturation process.
Collapse
Affiliation(s)
- Ryoto Watanabe
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Chihong Song
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Yoko Kayama
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Terabase, Inc., Okazaki, Aichi, Japan
| | - Masaharu Takemura
- Institute of Arts and Sciences, Tokyo University of Science, Shinjuku, Tokyo, Japan
| | - Kazuyoshi Murata
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| |
Collapse
|