1
|
Dziri S, Marin J, Quagliaro P, Genestet C, Dumitrescu O, Carbonnelle E, Billard-Pomares T. Optimization of Mycobacterium tuberculosis DNA processing prior to whole genome sequencing. Tuberculosis (Edinb) 2024; 148:102543. [PMID: 39008943 DOI: 10.1016/j.tube.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
The process of whole genome sequencing of the Mycobacterium tuberculosis complex is dependent on complete the inactivation of the strain and subsequent DNA extraction. The objective of this study was to optimise the two steps. Firstly, the efficacy of Triton X-100 as a solvent for the inactivation step was evaluated. This solvent has been demonstrated to be effective in killing bacteria and is less toxic than the previously employed chloroform. For the extraction step, two lysis methods were evaluated: enzymatic (B1 protocol) and mechanical (B2 protocol). For whole genome sequencing, the Nextera XT DNA library preparation protocol was performed for both the B1 and B2 protocols. Subsequently, each library was subjected to whole-genome sequencing. The results demonstrated that heat lysis inactivation with Triton was effective, with no bacteria remaining viable following this treatment. The enzymatic and mechanical extraction protocols yielded comparable results in terms of DNA quantity and quality. The sequencing results showed that there was no significant difference in read depths between the two protocols. In conclusion, for MTBC strains, we recommend the use of our Triton inactivation method, which meets biosafety expectations.
Collapse
Affiliation(s)
- Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France.
| | - Julie Marin
- Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000, Bobigny, France
| | - Pauline Quagliaro
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France
| | - Charlotte Genestet
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - CNRS UMR5308, 69007, Lyon, France; Institut des Agents Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 69004, Lyon, France
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - CNRS UMR5308, 69007, Lyon, France; Institut des Agents Infectieux, Hôpital de La Croix Rousse, Hospices Civils de Lyon, 69004, Lyon, France
| | - Etienne Carbonnelle
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000, Bobigny, France
| | - Typhaine Billard-Pomares
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie Clinique, F-93009, Bobigny, France; Université Sorbonne Paris Nord and Université Paris Cité, Inserm, IAME, F-93000, Bobigny, France
| |
Collapse
|
2
|
Bahuaud O, Genestet C, Hodille E, Vallée M, Testard Q, Tataï C, Saison J, Rasigade JP, Lina G, Ader F, Dumitrescu O. Rapid resistance detection is reliable for prompt adaptation of isoniazid resistant tuberculosis management. Heliyon 2024; 10:e29932. [PMID: 38726207 PMCID: PMC11078763 DOI: 10.1016/j.heliyon.2024.e29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Objectives Appropriate tuberculosis (TB) management requires anti-TB drugs resistance detection. We assessed the performance of rapid resistance detection assays and their impact on treatment adaptation, focusing on isoniazid resistant (Hr) TB. Methods From 2016 to 2022, all TB cases enrolled in 3 hospitals were reviewed for phenotypic drug susceptibility testing (p-DST) and genotypic DST (g-DST) performed by rapid molecular testing, and next generation sequencing (NGS). Clinical characteristics, treatment and outcome were collected for Hr-TB patients. The concordance between g-DST and p-DST results, and delay between treatment initiation and results of g-DST and p-DST were respectively recorded to assess the contribution of DST results on Hr-TB management. Results Among 654 TB cases enrolled, 29 were Hr-TB. Concordance between g-DST by rapid molecular methods and p-DST was 76.9 %, whilst concordance between NGS-based g-DST and p-DST was 98.7 %. Rapid resistance detection significantly fastened Hr-TB treatment adaptation (median delay between g-DST results and treatment modification was 6 days). It consisted in fluoroquinolone implementation for 17/23 patients; outcome was favourable except for 2 patients who died before DST reporting. Conclusion Rapid resistance detection fastened treatment adaptation. Also, NGS-based g-DST showed almost perfect concordance with p-DST, thus providing rapid and safe culture-free DST alternative.
Collapse
Affiliation(s)
- Olivier Bahuaud
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Service des Maladies Infectieuses et Tropicales, Lyon, France
| | - Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
| | - Elisabeth Hodille
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
| | - Maxime Vallée
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
| | - Quentin Testard
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
| | - Caroline Tataï
- Centre de Lutte Anti Tuberculeuse, Bourg-en-Bresse, France
| | - Julien Saison
- Infectious Diseases Department, Valence Hospital Center, Valence, France
- Clinical Research Unit, Valence Hospital Center, Valence, France
| | - Jean-Philippe Rasigade
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
| | - Gérard Lina
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - Florence Ader
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Service des Maladies Infectieuses et Tropicales, Lyon, France
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| | - Lyon TB study group
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France
- Hospices Civils de Lyon, Service des Maladies Infectieuses et Tropicales, Lyon, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de Bactériologie, Lyon, France
- Centre de Lutte Anti Tuberculeuse, Bourg-en-Bresse, France
- Infectious Diseases Department, Valence Hospital Center, Valence, France
- Clinical Research Unit, Valence Hospital Center, Valence, France
- Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Lyon, France
| |
Collapse
|
3
|
Kim D, Shin JI, Yoo IY, Jo S, Chu J, Cho WY, Shin SH, Chung YJ, Park YJ, Jung SH. GenoMycAnalyzer: a web-based tool for species and drug resistance prediction for Mycobacterium genomes. BMC Genomics 2024; 25:387. [PMID: 38643090 PMCID: PMC11031912 DOI: 10.1186/s12864-024-10320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect drug resistance, and further guide treatment options. RESULTS We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evaluated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Compared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% for rifampicin (95% CI 94.8-96.7%) to 79.6% for pyrazinamide (95% CI 76.9-82.2%), whereas those for second-line drugs ranged from 98.2% for levofloxacin (95% CI 90.1-100.0%) to 74.9% for capreomycin (95% CI 69.3-80.0%). Notably, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specificity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8-99.3%) to 79.5% for ethionamide (95% CI 76.4-82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 MTBC. CONCLUSIONS GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the interpretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contribute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://www.mycochase.org .
Collapse
Affiliation(s)
- Doyoung Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Ih Shin
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Jo
- Department of Laboratory Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyon Chu
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | - Yeun-Jun Chung
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Jung
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Integrated Research Center for Genomic Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Departments of Biochemistry, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoch-Gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
4
|
Xia Z, Su B, Tu C, Sun S, Tan Y, Xu Y, Li Q. Single-tube protocol for culture-independent spoligotyping of Mycobacterium tuberculosis based on MeltArray. J Clin Microbiol 2024; 62:e0118323. [PMID: 38112521 PMCID: PMC10793361 DOI: 10.1128/jcm.01183-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Spacer oligonucleotide typing (spoligotyping), the first-line genotyping assay for Mycobacterium tuberculosis (MTB), plays a fundamental role in the investigation of its epidemiology and evolution. In this study, we established a single-tube spoligotyping assay using MeltArray, a highly multiplex polymerase chain reaction (PCR) approach that runs on a real-time PCR thermocycler. The MeltArray protocol included an internal positive control, gyrB, to indicate the abundance of MTB via the quantification cycle and 43 spacers to identify the spoligotype via melting curve analysis. The entire protocol was completed in a single step within 2.5 hours. The lowest detectable copy number for the tested strains was 20 copies/reaction and thus sufficient for analyzing both culture and sputum samples. We conclude that MeltArray-based spoligotyping could be used immediately in low- and middle-income countries with a high tuberculosis burden, given its easy access, improved throughput, and potential applicability to clinical samples.
Collapse
Affiliation(s)
- Zihan Xia
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Biyi Su
- Guangzhou Chest Hospital, Guangzhou, China
| | - Chunxia Tu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Siyang Sun
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yaoju Tan
- Guangzhou Chest Hospital, Guangzhou, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qingge Li
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Bakuła Z, Dziurzyński M, Decewicz P, Bakonytė D, Vasiliauskaitė L, Nakčerienė B, Krenke R, Stakėnas P, Jagielski T. Spoligotyping of Mycobacterium tuberculosis - Comparing in vitro and in silico approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105508. [PMID: 37757901 DOI: 10.1016/j.meegid.2023.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Spoligotyping is one of the molecular typing methods widely used for exploring the genetic variety of Mycobacterium tuberculosis. The aim of this study was to compare the spoligoprofiles of M. tuberculosis clinical isolates, obtained using in vitro and in silico approaches. The study included 230 M. tuberculosis isolates, recovered from Poland and Lithuania between 2018 and 2021. Spoligotyping in vitro was performed with a commercially available kit. Whole genome sequencing (WGS) was done with Illumina NovaSeq 6000 sequencer. Spoligotype International Types (SITs) were assigned according to the SITVIT2 database or using three different in silico tools, and based on WGS data, namely SpoTyping, SpolPred, and lorikeet. Upon in vitro spoligotyping, the isolates produced 65 different spoligotypes. Spoligotypes inferred from the WGS data were congruent with in vitro generated patterns in 81.7% (188/230) for lorikeet and 81.3% (187/230) for SpolPred and SpoTyping. Spacers 18 and 31 produced the highest ratio of discrepant results between in vitro and in silico approaches, with their signals discordantly assigned for 15 (6.5%) and 9 (3.9%) isolates, respectively. All three in silico approaches used were similarly efficient for M. tuberculosis spoligotype prediction. However, only SpoTyping could predict spoligotypes without a need for manual curation. Thus, we consider it as the most accurate tool. Its use is further advocated by the shortest time of analysis. A relatively high (ca. 20%) discordance between in vitro and in silico spoligotyping results was observed. While we discourage comparing conventional spoligotyping with in silico equivalents, we advise the use of the latter, as it improves the accuracy of spoligopatterns, and thus depicts the relatedness between the isolates more reliably.
Collapse
Affiliation(s)
- Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Mikołaj Dziurzyński
- Department of Biology (DBIO), University of Florence, via Madonna del Piano 10, Sesto Fiorentino 50019, Italy.
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Daiva Bakonytė
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania.
| | - Laima Vasiliauskaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Vilnius University, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania; Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Lithuania.
| | - Birutė Nakčerienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania; Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania.
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland.
| | - Petras Stakėnas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania.
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
6
|
Zahran M, El-Shabasy RM, Elrashedy A, Mousa W, Nayel M, Salama A, Zaghawa A, Elsify A. Recent progress in the genotyping of bovine tuberculosis and its rapid diagnosis via nanoparticle-based electrochemical biosensors. RSC Adv 2023; 13:31795-31810. [PMID: 37908649 PMCID: PMC10613952 DOI: 10.1039/d3ra05606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine tuberculosis (bTB) is considered a worldwide infectious zoonotic disease. Mycobacterium bovis causes bTB disease. It is one of the Mycobacterium tuberculosis complex (MTBC) members. MTBC is a clonal complex of close relatives with approximately 99.95% similarity. M. bovis is a spillover pathogen that can transmit from animals to humans and rarely from humans to animals with contact. Genotyping techniques are important to discriminate and differentiate between MTBC species. Spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) are widely used but they have some limitations. As an alternative, whole genome sequencing approaches have been utilized due to their high-resolution power. They are employed in typing M. bovis and explain the evolutionary and phylogenetic relationships between isolates. The control of bTB disease has attracted a large amount of attention. Rapid and proper diagnosis is necessary for monitoring the disease as an initial step for its control and treatment. Nanotechnology has a potential impact on the rapid diagnosis and treatment of bTB through the use of nanocarrier and metal nanoparticles (NPs). Special attention has been paid to voltammetric and impedimetric electrochemical strategies as facile, sensitive, and selective methods for the efficient detection of tuberculosis. The efficacy of these sensors is enhanced in the presence of NPs, which act as recognition and/or redox probes. Gold, silver, copper, cobalt, graphene, and magnetic NPs, as well as polypyrrole nanowires and multiwalled carbon nanotubes have been employed for detecting tuberculosis. Overall, NP-based electrochemical sensors represent a promising tool for the diagnosis of bTB.
Collapse
Affiliation(s)
- Moustafa Zahran
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Menoufia Company for Water and Wastewater, Holding Company for Water and Wastewater Menoufia 32514 Egypt
| | - Rehan M El-Shabasy
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Chemistry Department, The American University in Cairo AUC Avenue New Cairo 11835 Egypt
| | - Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Walid Mousa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| |
Collapse
|
7
|
Genestet C, Baffert Y, Vallée M, Bernard A, Benito Y, Lina G, Hodille E, Dumitrescu O. Development, Evaluation, and Implementation of a House-Made Targeted Next-Generation Sequencing Spoligotyping in a French Laboratory. Int J Mol Sci 2022; 23:ijms231911302. [PMID: 36232601 PMCID: PMC9569608 DOI: 10.3390/ijms231911302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Epidemiological studies investigating transmission chains of tuberculosis are undertaken worldwide to tackle its spread. CRISPR locus diversity, called spoligotyping, is a widely used genotyping assay for Mycobacterium tuberculosis complex (MTBC) characterization. Herein, we developed a house-made targeted next-generation sequencing (tNGS) spoligotyping, and compared its outputs with those of membrane-based spoligotyping. A total of 144 clinical MTBC strains were retrospectively selected to be representative of the local epidemiology. Data analysis of a training set allowed for the setting of “presence”/“absence” thresholds for each spacer to maximize the sensibility and specificity related to the membrane-based spoligotyping. The thresholds above, in which the spacer was considered present, were 50 read per millions for spacers 10 and 14, 20,000 for spacers 20, 21, and 31, and 1000 for the other spacers. The confirmation of these thresholds was performed using a validation set. The overall agreement on the training and validation sets was 97.5% and 93.8%, respectively. The discrepancies concerned six strains: Two for spacer 14, two for spacer 31, and two for spacer 32. The tNGS spoligotyping, whose thresholds were finely-tuned during a careful bioinformatics pipeline development process, appears be a technique that is reliable, inexpensive, free of handling errors, and automatable through automatic transfer into the laboratory computer system.
Collapse
Affiliation(s)
- Charlotte Genestet
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, 69007 Lyon, France
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France
| | - Yannick Baffert
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France
| | - Maxime Vallée
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France
| | - Albin Bernard
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, 69007 Lyon, France
| | - Yvonne Benito
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, 69007 Lyon, France
| | - Gérard Lina
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, 69007 Lyon, France
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France
| | - Elisabeth Hodille
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, 69007 Lyon, France
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France
- Correspondence:
| | - Oana Dumitrescu
- CIRI—Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, 69007 Lyon, France
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France
| |
Collapse
|