1
|
Matar IK, Dong Z, Matta CF. Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling. ChemMedChem 2024; 19:e202400303. [PMID: 39302818 PMCID: PMC11581423 DOI: 10.1002/cmdc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria are opportunistic intracellular pathogens that have plagued humans and other animals throughout history and still are today. They manipulate and hijack phagocytic cells of immune systems, enabling them to occupy this peculiar infection niche. Mycobacteria exploit a plethora of mechanisms to resist antimicrobials (e. g., waxy cell walls, efflux pumps, target modification, biofilms, etc.) thereby evolving into superbugs, such as extensively drug-resistant tuberculosis (XDR TB) bacilli and the emerging pathogenic Mycobacterium abscessus complex. This review summarizes the mechanisms of action of some of the surging antimycobacterial strategies. Exploiting the fact that mycobacteria are obligate aerobes and the differences between their oxidative phosphorylation pathways versus their human counterpart opens a promising avenue for drug discovery. The polymorphism of respiratory complexes across mycobacterial pathogens imposes challenges on the repositioning of antimycobacterial agents to battle the rise in nontuberculous mycobacterial infections. In silico strategies exploiting mycobacterial respiratory machinery data to design novel therapeutic agents are touched upon. The potential druggability of mycobacterial respiratory elements is reviewed. Future research addressing the health challenges associated with mycobacterial pathogens is discussed.
Collapse
Affiliation(s)
- Islam K. Matar
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| | - Zhongmin Dong
- Department of BiologySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
| | - Chérif F. Matta
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| |
Collapse
|
2
|
Ito A, Nanjo Y, Kajiwara C, Shiozawa A, Urabe N, Homma S, Kishi K, Yamada K, Ishii Y, Tateda K. Intrinsic clarithromycin heteroresistance in Mycobacterium avium. J Infect Chemother 2024; 30:752-756. [PMID: 38369123 DOI: 10.1016/j.jiac.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Mycobacterium avium is associated with pulmonary disease in otherwise healthy adults. Several clarithromycin-refractory cases have been reported, including some cases caused by clarithromycin-susceptible strains. OBJECTIVES To characterize the reason for the discrepancy between clinical response and antibiotic susceptibility results. METHODS We conducted population analysis of clarithromycin-tolerant and heteroresistant subpopulations of M. avium cultured in vitro and in homogenates of infected lungs of mice. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for 28 M. avium and two M. kansasii strains. Mice were intranasally infected with M. avium and treated with or without clarithromycin (100 mg/kg) thrice weekly. They were sacrificed on day 35 and the bacteria in lung homogenates were tested for clarithromycin resistance. Population analysis assays were performed based on colony growth on plates containing two-fold dilutions of clarithromycin. RESULTS The MBC/MIC ratios were ≥8 in all 28 strains of M. avium tested. In the population analysis assay, several colonies were observed on the plates containing clarithromycin concentrations above the MIC (2-64 mg/L). No growth of M. kansasii colonies was observed on the plates containing clarithromycin concentrations ≥2 mg/L. M. avium in the homogenates of infected lungs showed clearer clarithromycin-resistant subpopulations than in vitro, regardless of clarithromycin exposure. CONCLUSION M. avium shows intrinsic heterogeneous resistance (heteroresistance) to clarithromycin. This may explain the observed discrepancies between clarithromycin susceptibility testing results and clinical response to clarithromycin treatment. Further studies are needed to confirm a link between heteroresistance and clinical outcomes.
Collapse
Affiliation(s)
- Ai Ito
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan; Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yuta Nanjo
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan; Department of Respiratory Medicine, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Ayako Shiozawa
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Naohisa Urabe
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kazuma Kishi
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kageto Yamada
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
3
|
Matern WM, Harris HT, Danchik C, McDonald M, Patel G, Srivastava A, Ioerger TR, Bader JS, Karakousis PC. Functional Whole Genome Screen of Nutrient-Starved Mycobacterium tuberculosis Identifies Genes Involved in Rifampin Tolerance. Microorganisms 2023; 11:2269. [PMID: 37764112 PMCID: PMC10534295 DOI: 10.3390/microorganisms11092269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3, moeA1, rv0049, and rv2179c. These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens.
Collapse
Affiliation(s)
- William M. Matern
- Department of Biomedical Engineering, Institute for Computational Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (W.M.M.)
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Harley T. Harris
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Carina Danchik
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marissa McDonald
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gopi Patel
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Aashish Srivastava
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joel S. Bader
- Department of Biomedical Engineering, Institute for Computational Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (W.M.M.)
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
| | - Petros C. Karakousis
- Center for Systems Approaches to Infectious Diseases (C-SAID), School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (H.T.H.)
- Tuberculosis Research Advancement Center, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Thapa J, Chizimu JY, Kitamura S, Akapelwa ML, Suwanthada P, Miura N, Toyting J, Nishimura T, Hasegawa N, Nishiuchi Y, Gordon SV, Nakajima C, Suzuki Y. Characterization of DNA Gyrase Activity and Elucidation of the Impact of Amino Acid Substitution in GyrA on Fluoroquinolone Resistance in Mycobacterium avium. Microbiol Spectr 2023; 11:e0508822. [PMID: 37067420 PMCID: PMC10269562 DOI: 10.1128/spectrum.05088-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
Mycobacterium avium, a member of the M. avium complex (MAC), is the major pathogen contributing to nontuberculous mycobacteria (NTM) infections worldwide. Fluoroquinolones (FQs) are recommended for the treatment of macrolide-resistant MACs. The association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA of M. avium is not yet clearly understood, as many FQ-resistant clinical M. avium isolates do not have such mutations. This study aimed to elucidate the role of amino acid substitution in the QRDR of M. avium GyrA in the development of FQ resistance. We found four clinical M. avium subsp. hominissuis isolates with Asp-to-Gly change at position 95 (Asp95Gly) and Asp95Tyr mutations in gyrA that were highly resistant to FQs and had 2- to 32-fold-higher MICs than the wild-type (WT) isolates. To clarify the contribution of amino acid substitutions to FQ resistance, we produced recombinant WT GyrA, GyrB, and four GyrA mutant proteins (Ala91Val, Asp95Ala, Asp95Gly, and Asp95Tyr) to elucidate their potential role in FQ resistance, using them to perform FQ-inhibited DNA supercoiling assays. While all the mutant GyrAs contributed to the higher (1.3- to 35.6-fold) FQ 50% inhibitory concentration (IC50) than the WT, Asp95Tyr was the most resistant mutant, with an IC50 15- to 35.6-higher than that of the WT, followed by the Asp95Gly mutant, with an IC50 12.5- to 17.6-fold higher than that of the WT, indicating that these amino acid substitutions significantly reduced the inhibitory activity of FQs. Our results showed that amino acid substitutions in the gyrA of M. avium contribute to FQ resistance. IMPORTANCE The emergence of fluoroquinolone (FQ) resistance has further compounded the control of emerging Mycobacterium avium-associated nontuberculous mycobacteria infections worldwide. For M. avium, the association of FQ resistance and mutations in the quinolone resistance-determining region (QRDR) of gyrA is not yet clearly understood. Here, we report that four clinical M. avium isolates with a mutation in the QRDR of gyrA were highly resistant to FQs. We further clarified the impact of mutations in the QRDR of GyrA proteins by performing in vitro FQ-inhibited DNA supercoiling assays. These results confirmed that, like in Mycobacterium tuberculosis, mutations in the QRDR of gyrA also strongly contribute to FQ resistance in M. avium. Since many FQ-resistant M. avium isolates do have these mutations, the detailed molecular mechanism of FQ resistance in M. avium needs further exploration.
Collapse
Affiliation(s)
- Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Joseph Yamweka Chizimu
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Zambian National Public Health Institute, Ministry of Health, Lusaka, Zambia
| | - Soyoka Kitamura
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Pondpan Suwanthada
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Nami Miura
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Jirachaya Toyting
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
- Office of Academic Research and Industry-Government Collaboration, Section of Microbial Genomics and Ecology, Hiroshima University, Higashi-Hiroshima, Japan
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Matern WM, Harris HT, Danchik C, McDonald M, Patel G, Srivastava A, Ioerger TR, Bader JS, Karakousis PC. Functional whole genome screen of nutrient-starved Mycobacterium tuberculosis identifies genes involved in antibiotic tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536593. [PMID: 37090629 PMCID: PMC10120713 DOI: 10.1101/2023.04.12.536593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mycobacterium tuberculosis ( Mtb ), the causative agent of tuberculosis (TB), poses a global health challenge and is responsible for over a million deaths each year. Current treatment is lengthy and complex, and new, abbreviated regimens are urgently needed. Mtb adapts to nutrient starvation, a condition experienced during host infection, by shifting its metabolism and becoming tolerant to the killing activity of bactericidal antibiotics. An improved understanding of the mechanisms mediating antibiotic tolerance in Mtb can serve as the basis for developing more effective therapies. We performed a forward genetic screen to identify candidate Mtb genes involved in tolerance to the two key first-line antibiotics, rifampin and isoniazid, under nutrient-rich and nutrient-starved conditions. In nutrient-rich conditions, we found 220 mutants with differential antibiotic susceptibility (218 in the rifampin screen and 2 in the isoniazid screen). Following Mtb adaptation to nutrient starvation, 82 mutants showed differential antibiotic susceptibility (80 in the rifampin screen and 2 in the isoniazid screen). Using targeted mutagenesis, we validated the rifampin-hypersusceptible phenotype under nutrient starvation in Mtb mutants lacking the following genes: ercc3 , moeA1 , rv0049 , and rv2179c . These findings shed light on potential therapeutic targets, which could help shorten the duration and complexity of antitubercular regimens. Importance Treatment of Mtb infection requires a long course of combination antibiotics, likely due to subpopulations of tolerant bacteria exhibiting decreased susceptibility to antibiotics. Identifying and characterizing the genetic pathways involved in antibiotic tolerance is expected to yield therapeutic targets for the development of novel TB treatment-shortening regimens.
Collapse
|