1
|
Coll F, Blane B, Bellis KL, Matuszewska M, Wonfor T, Jamrozy D, Toleman MS, Geoghegan JA, Parkhill J, Massey RC, Peacock SJ, Harrison EM. The mutational landscape of Staphylococcus aureus during colonisation. Nat Commun 2025; 16:302. [PMID: 39805814 PMCID: PMC11730646 DOI: 10.1038/s41467-024-55186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution. Here we applied a genome-wide mutation enrichment approach to a genomic dataset of 3060 S. aureus colonization isolates from 791 individuals. Despite limited within-host genetic diversity, we observed an excess of protein-altering mutations in metabolic genes, in regulators of quorum-sensing (agrA and agrC) and in known antibiotic targets (fusA, pbp2, dfrA and ileS). We demonstrated the phenotypic effect of multiple adaptive mutations in vitro, including changes in haemolytic activity, antibiotic susceptibility, and metabolite utilisation. Nitrogen metabolism showed the strongest evidence of adaptation, with the assimilatory nitrite reductase (nasD) and urease (ureG) showing the highest mutational enrichment. We identified a nasD natural mutant with enhanced growth under urea as the sole nitrogen source. Inclusion of 4090 additional isolate genomes from 731 individuals revealed eight more genes including sasA/sraP, darA/pstA, and rsbU with signals of adaptive variation that warrant further characterisation. Our study provides a comprehensive picture of the heterogeneity of S. aureus adaptive changes during colonisation, and a robust methodological approach applicable to study in host adaptive evolution in other bacterial pathogens.
Collapse
Affiliation(s)
- Francesc Coll
- Applied Microbial Genomics Unit, Department of Molecular Basis of Disease, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain.
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katherine L Bellis
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marta Matuszewska
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Toska Wonfor
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Department of Microbes, Infection & Microbiomes, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Dorota Jamrozy
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | - Joan A Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Department of Microbes, Infection & Microbiomes, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Ewan M Harrison
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Kawamura H, Imuta N, Ooka T, Shigemi A, Nakamura M, Mougi K, Obama Y, Fukuyama R, Arimura S, Murata N, Tominaga H, Sasaki H, Nagano S, Taniguchi N, Nishi J. Impact of control measures including decolonization and hand hygiene for orthopaedic surgical site infection caused by MRSA at a Japanese tertiary-care hospital. J Hosp Infect 2024; 146:151-159. [PMID: 37516280 DOI: 10.1016/j.jhin.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Meticillin-resistant Staphylococcus aureus (MRSA) is the most common pathogen in orthopaedic surgical site infections (SSIs). However, few studies have investigated the transmission process of orthopaedic MRSA SSI. AIM To investigate the transmission process of orthopaedic MRSA SSI using epidemiological and molecular analyses and to determine a method to prevent MRSA SSI in nosocomial orthopaedic surgery. METHODS Active MRSA surveillance, preoperative decolonization and contact precautions for MRSA-positive cases was performed at our institution. Changes in epidemic strains were evaluated and the possibility of transmission from patients in an orthopaedic ward of a Japanese tertiary-care hospital was assessed by genotyping stored MRSA strains. In addition, data on the prevalence of MRSA SSI, MRSA colonization, and use of an alcohol antiseptic agent (mL/patient-days) during 2005-2022 were retrospectively assessed. FINDINGS SCCmec type II strain in the SSI group decreased over time, associated with fewer outbreaks. Even during a period of high infection rates, no cases of transmission-induced SSI from nasal MRSA carriers were identified. The infection rate correlated negatively with the use of an alcohol antiseptic agent (r = -0.82; P < 0.0001). Two cases among five nasal carriers developed MRSA SSI caused by strains different from those related to nasal colonization. CONCLUSION The infection control measures for transmission from the hospital reservoirs including strict adherence to hand hygiene and decolonization of carriers is likely to be important for the prevention of orthopaedic MRSA SSI. However, the need for contact precautions for decolonized nasal carriers might be low.
Collapse
Affiliation(s)
- H Kawamura
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan; Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - N Imuta
- Department of Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - T Ooka
- Department of Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - A Shigemi
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan
| | - M Nakamura
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan; Clinical Laboratory, Kagoshima University Hospital, Kagoshima, Japan
| | - K Mougi
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan; Clinical Laboratory, Kagoshima University Hospital, Kagoshima, Japan
| | - Y Obama
- Clinical Laboratory, Kagoshima University Hospital, Kagoshima, Japan
| | - R Fukuyama
- Clinical Laboratory, Kagoshima University Hospital, Kagoshima, Japan
| | - S Arimura
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan
| | - N Murata
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan
| | - H Tominaga
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - H Sasaki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - S Nagano
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - N Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - J Nishi
- Department of Infection Control and Prevention, Kagoshima University Hospital, Kagoshima, Japan; Department of Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
3
|
Cranmer KD, Pant MD, Quesnel S, Sharp JA. Clonal Diversity, Antibiotic Resistance, and Virulence Factor Prevalence of Community Associated Staphylococcus aureus in Southeastern Virginia. Pathogens 2023; 13:25. [PMID: 38251333 PMCID: PMC10821353 DOI: 10.3390/pathogens13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine).
Collapse
Affiliation(s)
- Katelyn D. Cranmer
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Mohan D. Pant
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Suzanne Quesnel
- Children’s Hospital of the King’s Daughters, Norfolk, VA 23507, USA
| | - Julia A. Sharp
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
4
|
Lyon LM, Doran KS, Horswill AR. Staphylococcus aureus Fibronectin-Binding Proteins Contribute to Colonization of the Female Reproductive Tract. Infect Immun 2023; 91:e0046022. [PMID: 36511703 PMCID: PMC9872658 DOI: 10.1128/iai.00460-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and frequent colonizer of human skin and mucosal membranes, including the vagina, with vaginal colonization reaching nearly 25% in some pregnant populations. MRSA vaginal colonization can lead to aerobic vaginitis (AV), and during pregnancy, bacterial ascension into the upper reproductive tract can lead to adverse birth outcomes. USA300, the most prominent MRSA lineage to colonize pregnant individuals, is a robust biofilm former and causative agent of invasive infections; however, little is known about how it colonizes and ascends in the female reproductive tract (FRT). Our previous studies showed that a MRSA mutant of seven fibrinogen-binding adhesins was deficient in FRT epithelial attachment and colonization. Using both monolayer and multilayer air-liquid interface cell culture models, we determine that one class of these adhesins, the fibronectin binding proteins (FnBPA and FnBPB), are critical for association with human vaginal epithelial cells (hVECs) and hVEC invasion through interactions with α5β1 integrin. We observe that both FnBPs are important for biofilm formation as single and double fnbAB mutants exhibit reduced biofilm formation on hVECs. Using heterologous expression of fnbA and fnbB in Staphylococcus carnosus, FnBPs are also found to be sufficient for hVEC cellular association, invasion, and biofilm formation. In addition, we found that an ΔfnbAB mutant displays attenuated ascension in our murine vaginal colonization model. Better understanding of MRSA FRT colonization and ascension can ultimately inform treatment strategies to limit MRSA vaginal burden or prevent ascension, especially during pregnancy and in those prone to AV.
Collapse
Affiliation(s)
- Laurie M. Lyon
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
5
|
Wei J, Ma K, Zhang Y, Yang X, Tang Q, Nie Z. Correlation Analysis of Staphylococcus aureus Drug Resistance and Virulence Factors with Blood Cell Counts and Coagulation Indexes. Int J Clin Pract 2023; 2023:8768152. [PMID: 36846497 PMCID: PMC9946751 DOI: 10.1155/2023/8768152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE The influence of different Staphylococcus aureus variants on blood cells and coagulation system was evaluated by investigating the carrying status of drug resistance genes and virulence genes of methicillin-resistantStaphylococcus aureus (MRSA) and methicillin-sensitiveStaphylococcus aureus (MSSA). METHODS A total of 105 blood culture-derivedStaphylococcus aureus strains were collected. The carrying status of drug resistance genes mecA and three virulence genes tst, pvl, and sasX was analyzed by polymerase chain reaction (PCR). The changes in routine blood routine counts and coagulation indexes of patients infected with different strains were analyzed. RESULTS The results showed that the positive rate of mecA was consistent with that of MRSA. Virulence genes tst and sasX were detected only in MRSA. Compared with MSSA, patients infected with MRSA or MSSA patients infected with virulence factor, leukocyte count and neutrophil count in peripheral blood were significantly increased, and the platelet count decreased to a higher degree. Part thromboplastin time increased, D-dimer increased, but fibrinogen content decreased more. The changes of erythrocyte and hemoglobin had no significant correlation with whether Staphylococcus aureus carried virulence genes. CONCLUSION The detection rate of MRSA in patients with positive Staphylococcus aureus in blood culture had exceeded 20%. The detected MRSA bacteria carried three virulence genes, tst, pvl, and sasX, which were more likely than MSSA. MRSA, which carries two virulence genes, is more likely to cause clotting disorders.
Collapse
Affiliation(s)
- Jing Wei
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Kaihui Ma
- Department of Clinical Laboratory, Yancheng Maternity and Child Health Hospital, 31 Century Avenue East Road, Yancheng 224000, Jiangsu, China
| | - Yuan Zhang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xincheng Yang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Qiao Tang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| |
Collapse
|
6
|
Wang Y, Li Q, Peng X, Li Z, Xiang J, Chen Y, Hao K, Wang S, Nie D, Cui Y, Lv F, Wang Y, Wu W, Guo D, Si H. Green synthesis of silver nanoparticles through oil: Promoting full-thickness cutaneous wound healing in methicillin-resistant Staphylococcus aureus infections. Front Bioeng Biotechnol 2022; 10:856651. [PMID: 36082170 PMCID: PMC9445837 DOI: 10.3389/fbioe.2022.856651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Due to the emergence of multi-drug resistant microorganisms, the development and discovery of alternative eco-friendly antimicrobial agents have become a top priority. In this study, a simple, novel, and valid green method was developed to synthesize Litsea cubeba essential oil-silver nanoparticles (Lceo-AgNPs) using Lceo as a reducing and capping agent. The maximum UV absorbance of Lceo-AgNPs appeared at 423 nm and the size was 5-15 nm through transmission electron microscopy result. The results of Fourier transform infrared and DLS showed that Lceo provided sufficient chemical bonds for Lceo-AgNPs to reinforce its stability and dispersion. The in vitro antibacterial effects of Lceo-AgNPs against microbial susceptible multidrug-resistant Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) were determined. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Lceo-AgNPs against E. coli were 25 and 50 μg/ml. The MIC and MBC of Lceo-AgNPs against MRSA were 50 and 100 μg/ml, respectively. The results of scanning electron microscopy showed that the amount of bacteria obviously decreased and the bacteria cells were destroyed by Lceo-AgNPs. In vivo research disclosed significant wound healing and re-epithelialization effects in the Lceo-AgNPs group compared with the self-healing group and the healing activity was better than in the sulfadiazine silver group. In this experiment, Lceo-AgNPs has been shown to have effects on killing multidrug-resistant bacteria and promoting wound healing. This study suggested Lceo-AgNPs as an excellent new-type drug for wound treatment infected with multidrug-resistant bacteria, and now expects to proceed with clinical research.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qinmei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunru Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaiyuan Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuaiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dongyang Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenda Wu
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|