1
|
Marreddy RKR, Phelps GA, Churion K, Picker J, Powell R, Cherian PT, Bowling JJ, Stephan CC, Lee RE, Hurdle JG. Chemical genetic analysis of enoxolone inhibition of Clostridioides difficile toxin production reveals adenine deaminase and ATP synthase as antivirulence targets. J Biol Chem 2024; 300:107839. [PMID: 39343002 PMCID: PMC11566853 DOI: 10.1016/j.jbc.2024.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Toxins TcdA and TcdB are the main virulence factors of Clostridioides difficile, a leading cause of hospital-acquired diarrhea. Despite their importance, there is a significant knowledge gap of druggable targets for inhibiting toxin production. To address this, we screened nonantibiotic phytochemicals to identify potential chemical genetic probes to discover antivirulence drug targets. This led to the identification of 18β-glycyrrhetinic acid (enoxolone), a licorice metabolite, as an inhibitor of TcdA and TcdB biosynthesis. Using affinity-based proteomics, potential targets were identified as ATP synthase subunit alpha (AtpA) and adenine deaminase (Ade, which catalyzes conversion of adenine to hypoxanthine in the purine salvage pathway). To validate these targets, a multifaceted approach was adopted. Gene silencing of ade and atpA inhibited toxin biosynthesis, while surface plasmon resonance and isothermal titration calorimetry molecular interaction analyses revealed direct binding of enoxolone to Ade. Metabolomics demonstrated enoxolone induced the accumulation of adenosine, while depleting hypoxanthine and ATP in C. difficile. Transcriptomics further revealed enoxolone dysregulated phosphate uptake genes, which correlated with reduced cellular phosphate levels. These findings suggest that enoxolone's cellular action is multitargeted. Accordingly, supplementation with both hypoxanthine and triethyl phosphate, a phosphate source, was required to fully restore toxin production in the presence of enoxolone. In conclusion, through the characterization of enoxolone, we identified promising antivirulence targets that interfere with nucleotide salvage and ATP synthesis, which may also block toxin biosynthesis.
Collapse
Affiliation(s)
- Ravi K R Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Gregory A Phelps
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kelly Churion
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Reid Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Philip T Cherian
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John J Bowling
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Clifford C Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA.
| |
Collapse
|
2
|
Anjou C, Royer M, Bertrand É, Bredon M, Le Bris J, Salgueiro IA, Caulat LC, Dupuy B, Barbut F, Morvan C, Rolhion N, Martin-Verstraete I. Adaptation mechanisms of Clostridioides difficile to auranofin and its impact on human gut microbiota. NPJ Biofilms Microbiomes 2024; 10:86. [PMID: 39284817 PMCID: PMC11405772 DOI: 10.1038/s41522-024-00551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Auranofin (AF), a former rheumatoid polyarthritis treatment, gained renewed interest for its use as an antimicrobial. AF is an inhibitor of thioredoxin reductase (TrxB), a thiol and protein repair enzyme, with an antibacterial activity against several bacteria including C. difficile, an enteropathogen causing post-antibiotic diarrhea. Several studies demonstrated the effect of AF on C. difficile physiology, but the crucial questions of resistance mechanisms and impact on microbiota remain unaddressed. We explored potential resistance mechanisms by studying the impact of TrxB multiplicity and by generating and characterizing adaptive mutations. We showed that if mutants inactivated for trxB genes have a lower MIC of AF, the number of TrxBs naturally present in clinical strains does not impact the MIC. All stable mutations isolated after AF long-term exposure were in the anti-sigma factor of σB and strongly affect physiology. Finally, we showed that AF has less impact on human gut microbiota than vancomycin.
Collapse
Affiliation(s)
- Cyril Anjou
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Marie Royer
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Unité Écologie et Évolution de la Résistance aux Antibiotiques, Paris, France
| | - Émilie Bertrand
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Marius Bredon
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Julie Le Bris
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS UMR3525, Université Paris Cité, Paris, France
- Sorbonne Université, Collège Doctoral, École Doctorale Complexité du Vivant, 75005, Paris, France
| | - Iria Alonso Salgueiro
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Léo C Caulat
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Frédéric Barbut
- Université Paris Cité, INSERM, UMR-1139, Paris, France
- National Reference Laboratory for C. difficile, Assistance Publique Hôpitaux de Paris, Hôpital Saint-Antoine, 75012, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
3
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
4
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
5
|
Alves de Lima e Silva A, Rio-Tinto A. Ebselen: A Promising Repurposing Drug to Treat Infections Caused by Multidrug-Resistant Microorganisms. Interdiscip Perspect Infect Dis 2024; 2024:9109041. [PMID: 38586592 PMCID: PMC10998725 DOI: 10.1155/2024/9109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial multiresistance to drugs is a rapidly growing global phenomenon. New resistance mechanisms have been described in different bacterial pathogens, threatening the effective treatment of even common infectious diseases. The problem worsens in infections associated with biofilms because, in addition to the pathogen's multiresistance, the biofilm provides a barrier that prevents antimicrobial access. Several "non-antibiotic" drugs have antimicrobial activity, even though it is not their primary therapeutic purpose. However, due to the urgent need to develop effective antimicrobials to treat diseases caused by multidrug-resistant pathogens, there has been an increase in research into "non-antibiotic" drugs to offer an alternative therapy through the so-called drug repositioning or repurposing. The prospect of new uses for existing drugs has the advantage of reducing the time and effort required to develop new compounds. Moreover, many drugs are already well characterized regarding toxicity and pharmacokinetic/pharmacodynamic properties. Ebselen has shown promise for use as a repurposing drug for antimicrobial purposes. It is a synthetic organoselenium with anti-inflammatory, antioxidant, and cytoprotective activity. A very attractive factor for using ebselen is that, in addition to potent antimicrobial activity, its minimum inhibitory concentration is very low for microbial pathogens.
Collapse
Affiliation(s)
- Agostinho Alves de Lima e Silva
- Laboratory of Biology and Physiology of Microorganisms, Biomedical Institute, DMP, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-030, Brazil
| | - André Rio-Tinto
- Laboratory of Pathogenic Cocci and Microbiota, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
6
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
7
|
Saenz C, Fang Q, Gnanasekaran T, Trammell SAJ, Buijink JA, Pisano P, Wierer M, Moens F, Lengger B, Brejnrod A, Arumugam M. Clostridium scindens secretome suppresses virulence gene expression of Clostridioides difficile in a bile acid-independent manner. Microbiol Spectr 2023; 11:e0393322. [PMID: 37750706 PMCID: PMC10581174 DOI: 10.1128/spectrum.03933-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/08/2023] [Indexed: 09/27/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a major health concern and one of the leading causes of hospital-acquired diarrhea in many countries. C. difficile infection is challenging to treat as C. difficile is resistant to multiple antibiotics. Alternative solutions are needed as conventional treatment with broad-spectrum antibiotics often leads to recurrent CDI. Recent studies have shown that specific microbiota-based therapeutics such as bile acids (BAs) are promising approaches to treat CDI. Clostridium scindens encodes the bile acid-induced (bai) operon that carries out 7-alpha-dehydroxylation of liver-derived primary BAs to secondary BAs. This biotransformation is thought to increase the antibacterial effects of BAs on C. difficile. Here, we used an automated multistage fermentor to study the antibacterial actions of C. scindens and BAs on C. difficile in the presence/absence of a gut microbial community derived from healthy human donor fecal microbiota. We observed that C. scindens inhibited C. difficile growth when the medium was supplemented with primary BAs. Transcriptomic analysis indicated upregulation of C. scindens bai operon and suppressed expression of C. difficile exotoxins that mediate CDI. We also observed BA-independent antibacterial activity of the secretome from C. scindens cultured overnight in a medium without supplementary primary BAs, which suppressed growth and exotoxin expression in C. difficile mono-culture. Further investigation of the molecular basis of our observation could lead to a more specific treatment for CDI than current approaches. IMPORTANCE There is an urgent need for new approaches to replace the available treatment options against Clostridioides difficile infection (CDI). Our novel work reports a bile acid-independent reduction of C. difficile growth and virulence gene expression by the secretome of Clostridium scindens. This potential treatment combined with other antimicrobial strategies could facilitate the development of alternative therapies in anticipation of CDI and in turn reduce the risk of antimicrobial resistance.
Collapse
Affiliation(s)
- Carmen Saenz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qing Fang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesse Arnold Buijink
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paola Pisano
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Wierer
- Proteomics Research Infrastructure, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Asker Brejnrod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Antibacterial Activity of Ebselen. Int J Mol Sci 2023; 24:ijms24021610. [PMID: 36675123 PMCID: PMC9864093 DOI: 10.3390/ijms24021610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Ebselen is a low-molecular-weight organoselenium compound that has been broadly studied for its antioxidant, anti-inflammatory, and cytoprotective properties. These advantageous properties were initially associated with mimicking the activity of selenoprotein glutathione peroxidase, but the biomedical impact of this compound appear to be far more complex. Ebselen serves as a substrate or inhibitor with multiple protein/enzyme targets, whereas inhibition typically originates from the covalent modification of cysteine residues by opening the benzisoselenazolone ring and S-Se bond formation. The inhibition of enzymes of various classes and origins has been associated with substantial antimicrobial potential among other activities. In this contribution, we summarize the current state of the art regarding the antibacterial activity of ebselen. This activity, alone and in combination with commercial pharmaceuticals, against pathogens, including those resistant to drugs, is presented, together with the molecular mechanism behind the reactivity. The specific inactivation of thioredoxin reductase, bacterial toxins, and other resistance factors is considered to have certain therapeutic implications. Synergistic action and sensitization to common antibiotics assisted with the use of ebselen appear to be promising directions in the treatment of persistent infections.
Collapse
|
9
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Sudharsan M, Prasad NR, Kanimozhi G, Rishiikeshwer B, Brindha G, Chakraborty A. Redox status and metabolomic profiling of thioredoxin reductase inhibitors and 4 kGy ionizing radiation-exposed Deinococcus radiodurans. Microbiol Res 2022; 261:127070. [DOI: 10.1016/j.micres.2022.127070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
|