1
|
Hou L, Ye M, Wang X, Zhu Y, Sun X, Gu R, Chen L, Fang B. Synergism with Shikimic Acid Restores β-Lactam Antibiotic Activity against Methicillin-Resistant Staphylococcus aureus. Molecules 2024; 29:1528. [PMID: 38611807 PMCID: PMC11013880 DOI: 10.3390/molecules29071528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved into a dangerous pathogen resistant to beta-lactam antibiotics (BLAs) and has become a worrisome superbug. In this study, a strategy in which shikimic acid (SA), which has anti-inflammatory and antibacterial activity, is combined with BLAs to restart BLA activity was proposed for MRSA treatment. The synergistic effects of oxacillin combined with SA against oxacillin resistance in vitro and in vivo were investigated. The excellent synergistic effect of the oxacillin and SA combination was confirmed by performing the checkerboard assay, time-killing assay, live/dead bacterial cell viability assay, and assessing protein leakage. SEM showed that the cells in the control group had a regular, smooth, and intact surface. In contrast, oxacillin and SA or the combination treatment group exhibited different degrees of surface collapse. q-PCR indicated that the combination treatment group significantly inhibited the expression of the mecA gene. In vivo, we showed that the combination treatment increased the survival rate and decreased the bacterial load in mice. These results suggest that the combination of oxacillin with SA is considered an effective treatment option for MRSA, and the combination of SA with oxacillin in the treatment of MRSA is a novel strategy.
Collapse
Affiliation(s)
- Limin Hou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Minqi Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xueyan Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ruiheng Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Liangzhu Chen
- Guangdong Wenshi Dahuanong Biotechnology Co., Ltd., Yunfu 510610, China
| | - Binghu Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Campbell MJ, Beenken KE, Spencer HJ, Jayana B, Hester H, Sahukhal GS, Elasri MO, Smeltzer MS. Comparative evaluation of small molecules reported to be inhibitors of Staphylococcus aureus biofilm formation. Microbiol Spectr 2024; 12:e0314723. [PMID: 38059629 PMCID: PMC10782960 DOI: 10.1128/spectrum.03147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Because biofilm formation is such a problematic feature of Staphylococcus aureus infections, much effort has been put into identifying biofilm inhibitors. However, the results observed with these compounds are often reported in isolation, and the methods used to assess biofilm formation vary between labs, making it impossible to assess relative efficacy and prioritize among these putative inhibitors for further study. The studies we report address this issue by directly comparing putative biofilm inhibitors using a consistent in vitro assay. This assay was previously shown to maximize biofilm formation, and the results observed with this assay have been proven to be relevant in vivo. Of the 19 compounds compared using this method, many had no impact on biofilm formation under these conditions. Indeed, only one proved effective at limiting biofilm formation without also inhibiting growth.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bina Jayana
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hana Hester
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
3
|
Pan Z, Zhou C, Bai X, Wang F, Hong J, Fang JY, Huang Y, Sheng C. Discovery of New Fusobacterium nucleatum Inhibitors to Attenuate Migratory Capability of Colon Cancer Cells by the Drug Repositioning Strategy. J Med Chem 2023; 66:15699-15714. [PMID: 37983010 DOI: 10.1021/acs.jmedchem.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Recent studies revealed that intestinal microbiota played important roles in colorectal cancer (CRC) carcinogenesis. Particularly, Fusobacterium nucleatum was confirmed to promote the proliferation and metastasis of CRC. Therefore, targeting F. nucleatum may be a potential preventive and therapeutic approach for CRC. Herein, 2,272 off-patent drugs were screened inhibitory activity against F. nucleatum. Among the hits, nitisinone was identified as a promising anti-F. nucleatum lead compound. Further optimization of nitisinone led to the discovery of more potent derivatives. Particularly, compounds 19q and 22c showed potent anti-F. nucleatum activity (MIC50 = 1 and 2 μg/mL, respectively) with low cytotoxicity. Among them, compound 19q effectively attenuated the migratory ability of MC-38 cells induced by F. nucleatum. Preliminary mechanism studies suggested that nitisinone and its derivatives might act by downregulating nitroreductase and tryptophanase. Thus, the development of small molecule F. nucleatum inhibitors represents an effective strategy to treat CRC.
Collapse
Affiliation(s)
- Zhizhi Pan
- College of Pharmacy, Dali University, Xueren Road 2, Dali 671000, China
| | - Chenchen Zhou
- College of Pharmacy, Dali University, Xueren Road 2, Dali 671000, China
| | - Xuexin Bai
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Fangfang Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yahui Huang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
4
|
Park I, Lee JH, Ma JY, Tan Y, Lee J. Antivirulence activities of retinoic acids against Staphylococcus aureus. Front Microbiol 2023; 14:1224085. [PMID: 37771707 PMCID: PMC10525321 DOI: 10.3389/fmicb.2023.1224085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
Multidrug-resistant bacteria such as Staphylococcus aureus constitute a global health problem. Gram-positive S. aureus secretes various toxins associated with its pathogenesis, and its biofilm formation plays an important role in antibiotic tolerance and virulence. Hence, we investigated if the metabolites of vitamin A1 might diminish S. aureus biofilm formation and toxin production. Of the three retinoic acids examined, 13-cis-retinoic acid at 10 μg/mL significantly decreased S. aureus biofilm formation without affecting its planktonic cell growth (MIC >400 μg/mL) and also inhibited biofilm formation by Staphylococcus epidermidis (MIC >400 μg/mL), but less affected biofilm formation by a uropathogenic Escherichia coli strain, a Vibrio strain, or a fungal Candida strain. Notably, 13-cis-retinoic acid and all-trans-retinoic acid significantly inhibited the hemolytic activity and staphyloxanthin production by S. aureus. Furthermore, transcriptional analysis disclosed that 13-cis-retinoic acid repressed the expressions of virulence- and biofilm-related genes, such as the two-component arlRS system, α-hemolysin hla, nuclease (nuc1 and nuc2), and psmα (phenol soluble modulins α) in S. aureus. In addition, plant and nematode toxicity assays showed that 13-cis-retinoic acid was only mildly toxic at concentrations many folds higher than its effective antibiofilm concentrations. These findings suggest that metabolites of vitamin A1, particularly 13-cis-retinoic acid, might be useful for suppressing biofilm formation and the virulence characteristics of S. aureus.
Collapse
Affiliation(s)
- Inji Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin Yeul Ma
- Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
5
|
Chen T, Xu H, Yao X, Luo Z. Role of sodium pyruvate in maintaining the survival and cytotoxicity of Staphylococcus aureus under high glucose conditions. Front Microbiol 2023; 14:1209358. [PMID: 37405167 PMCID: PMC10315490 DOI: 10.3389/fmicb.2023.1209358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Glucose is a crucial carbon source for the growth of Staphylococcus aureus, but an excess of glucose is detrimental and even leads to cell death. Pyruvate, the central metabolite of glycolysis, has been shown to have anti-inflammatory and antioxidant properties. This study aimed to investigate the protective effect of pyruvate on S. aureus under high glucose conditions. Sodium pyruvate greatly increased the cytotoxicity of S. aureus strain BAA-1717 to human erythrocytes and neutrophils in vitro. However, the cytotoxicity and survival of S. aureus were significantly reduced by high glucose, which was restored to normal levels by the addition of sodium pyruvate. The expression of hlg and lukS in S. aureus was higher in the LB-GP cultures than that in LB-G cultures, but there was no significant difference in cytotoxicity between LB-GP and LB-G cultures. Furthermore, the hemolytic activity of S. aureus supernatants could be inhibited by the cell-free culture medium (CFCM) of LB-G cultures, suggesting that high levels of extracellular proteases were presence in the CFCM of LB-G cultures, resulting in degradation of the hemolytic factors. The expression of sarA, which negatively regulates extracellular protease secretion, was higher in LB-GP cultures than that in LB-G cultures. Additionally, sodium pyruvate increased acetate production in S. aureus, which helps maintain cell viability under acidic environment. In conclusion, pyruvate plays an important role in the survival and cytotoxicity of S. aureus under high glucose conditions. This finding may aid in the development of effective treatments for diabetic foot infections.
Collapse
Affiliation(s)
- Ti Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huan Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Yao
- Department of Medical Laboratory Science, School of Medicine, Hunan Normal University, Changsha, China
| | - Zhen Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Shen L, Zhang J, Chen Y, Rao L, Wang X, Zhao H, Wang B, Xiao Y, Yu J, Xu Y, Shi J, Han W, Song Z, Yu F. Small-Molecule Compound CY-158-11 Inhibits Staphylococcus aureus Biofilm Formation. Microbiol Spectr 2023; 11:e0004523. [PMID: 37166296 PMCID: PMC10269684 DOI: 10.1128/spectrum.00045-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
Staphylococcus aureus is an important human pathogen and brings about many community-acquired, hospital-acquired, and biofilm-associated infections worldwide. It tends to form biofilms, triggering the release of toxins and initiating resistance mechanisms. As a result of the development of S. aureus tolerance to antibiotics, there are few drugs can availably control biofilm-associated infections. In this study, we synthesized a novel small-molecule compound CY-158-11 (C22H14Cl2NO2Se2) and proved its inhibitory effect on the biofilm formation of S. aureus at a subinhibitory concentration (1/8 MIC). The subinhibitory concentration of CY-158-11 not only did not affect the growth of bacteria but also had no toxicity to A549 cells or G. mellonella. Total biofilm biomass was investigated by crystal violet staining, and the results were confirmed by SYTO 9 and PI staining through confocal laser scanning microscopy. Moreover, CY-158-11 effectively prevented initial attachment and repressed the production of PIA instead of autolysis. RT-qPCR analysis also exhibited significant suppression of the genes involved in biofilm formation. Taken together, CY-158-11 exerted its inhibitory effects against the biofilm formation in S. aureus by inhibiting cell adhesion and the expression of icaA related to PIA production. IMPORTANCE Most bacteria exist in the form of biofilms, often strongly adherent to various surfaces, causing bacterial resistance and chronic infections. In general, antibacterial drugs are not effective against biofilms. The small-molecule compound CY-158-11 inhibited the biofilm formation of S. aureus at a subinhibitory concentration. By hindering adhesion and PIA-mediated biofilm formation, CY-158-11 exhibits antibiofilm activity toward S. aureus. These findings point to a novel therapeutic agent for combating intractable S. aureus-biofilm-related infections.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulin Rao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
8
|
Liu S, Xiong Y, Xiao H, Zheng J, Wen Z, Li D, Deng Q, Yu Z. Inhibition of planktonic growth and biofilm formation of Staphylococcus aureus by entrectinib through disrupting the cell membrane. Front Microbiol 2023; 13:1106319. [PMID: 36699581 PMCID: PMC9868760 DOI: 10.3389/fmicb.2022.1106319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Over the last few decades, Staphylococcus aureus infection remain a major medical challenge and health concern worldwide. Biofilm formation and antibiotic resistance caused by S. aureus make it difficult to be eradicated from bacterial infections in clinics. In this study, our data demonstrated the antibacterial and excellent anti-biofilm activity of entrectinib against S. aureus. Entrectinib also exhibited the good safety, suggesting no toxicity with antibacterial concentration of entrectinib toward the erythrocytes and mammalian 239 T cells. Moreover, entrectinib significantly reduced the bacterial burden of septic tissue in a murine model of MRSA infection. Global proteomic analysis of S. aureus treated with entrectinib showed significant changes in the expression levels of ribosomal structure-related (rpmC, rpmD, rplX, and rpsT) and oxidative stress-related proteins (Thioredoxin system), suggesting the possible inhibition of bacterial protein biosynthesis with entrectinib exposure. The increased production of reactive oxygen species (ROS) was demonstrated in the entrectinib-treated S. aureus, supported the impact of entrectinib on the expression changes of ROS-correlated proteins involved in oxidative stress. Furthermore, entrectinib-induced resistant S. aureus clone was selected by in vitro induction under entrectinib exposure and 3 amino acid mutations in the entrectinib-induced resistant S. aureus strain, 2 of which were located in the gene encoding Type II NADH: quinoneoxidoreductase and one were found in GTP pyrophosphokinase family protein. Finally, the bactericidal action of entrectinib on S. aureus were confirmed by disrupting the bacterial cell membrane. Conclusively, entrectinib exhibit the antibacterial and anti-biofilm activity by destroying cell membrane against S. aureus.
Collapse
Affiliation(s)
- Shanghong Liu
- School of Pharmaceutical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zewen Wen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Duoyun Li
- School of Pharmaceutical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China,*Correspondence: Duoyun Li, ✉
| | - Qiwen Deng
- School of Pharmaceutical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China,Qiwen Deng, ✉
| | - Zhijian Yu
- School of Pharmaceutical Sciences, Health Sciences Center, Shenzhen University, Shenzhen, China,Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People’s Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China,Zhijian Yu, ✉
| |
Collapse
|
9
|
Deng W, Lei Y, Tang X, Li D, Liang J, Luo J, Liu L, Zhang W, Ye L, Kong J, Wang K, Chen Z. DNase inhibits early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. Front Cell Infect Microbiol 2022; 12:917038. [PMID: 36310876 PMCID: PMC9597695 DOI: 10.3389/fcimb.2022.917038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/22/2022] [Indexed: 12/25/2023] Open
Abstract
Anti-infection strategies against pleural empyema include the use of antibiotics and drainage treatments, but bacterial eradication rates remain low. A major challenge is the formation of biofilms in the pleural cavity. DNase has antibiofilm efficacy in vitro, and intrapleural therapy with DNase is recommended to treat pleural empyema, but the relevant mechanisms remain limited. Our aim was to investigate whether DNase I inhibit the early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. We used various assays, such as crystal violet staining, confocal laser scanning microscopy (CLSM) analysis, peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH), and scanning electron microscopy (SEM) analysis. Our results suggested that DNase I significantly inhibited early biofilm formation in a dose-dependent manner, without affecting the growth of P. aeruginosa or S. aureus in vitro. CLSM analysis confirmed that DNase I decreased the biomass and thickness of both bacterial biofilms. The PNA-FISH and SEM analyses also revealed that DNase I inhibited early (24h) biofilm formation in two empyema models. Thus, the results indicated that DNase inhibited early (24h) biofilm formation in P. aeruginosa- or S. aureus-induced rabbit empyema models and showed its therapeutic potential against empyema biofilms.
Collapse
Affiliation(s)
- Wusheng Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanmei Lei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiujia Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dingbin Li
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinhua Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuyuan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenshu Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liumei Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoyan Chen
- Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|