1
|
Wu X, Chen G, Wang P, Yang L, Wu Y, Wu G, Li H, Shao B. Co-existence of a novel RND efflux pump tmexC6D6.2-toprJ1b and bla OXA-4 in the extensively drug-resistant Pseudomonas aeruginosa ST233 clone. Int J Food Microbiol 2025; 428:110984. [PMID: 39579523 DOI: 10.1016/j.ijfoodmicro.2024.110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
The emergence of RND efflux pump gene cluster tmexCD-toprJ threats the clinical use of tigecycline as a last-resort antibiotic. Co-existence of extended spectrum β-lactamases and tmexCD-toprJ can accelerate the emergence of multidrug resistant or extensively drug-resistant Pseudomonas aeruginosa, leading to the production of high-risk clones. This study identified a novel gene cluster, tmexC6D6.2-toprJ1b, on the chromosome of a high-risk ST233 XDR P. aeruginosa from Chinese retail chicken samples. Genetic feature analysis revealed that a tnfxB6-tmexC6D6.2-toprJ1b-strBA-floR-tet(G)-IS6100-sul1-aadA2-int1-intA structure formed a putative transposition unit. tmexC6D6.2-toprJ1b shared high similarity at the nucleotide level with other tmexCD-toprJ gene clusters. tnfxB6 regulator was located downstream from the tmexC6D6.2-toprJ1b gene cluster and it did not affect bacterial resistance phenotype. The expression of tmexC6D6.2-toprJ1b could reduce the growth of E. coli and bring a moderate fitness cost. Further studies are needed to decipher the mechanism of the silencing of tnfxB6 in mediating the high-level resistance of tmexC6D6.2-torpJ1b and continuously monitor the coexistence of the novel tmexCD-toprJ gene cluster and the ESBLs-related resistance genes.
Collapse
Affiliation(s)
- Xuan Wu
- School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China
| | - Guorong Chen
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China; Department of Gastroenterology, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100029, PR China
| | - Panpan Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Lu Yang
- Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China; National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Guoquan Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Hui Li
- School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China.
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, PR China.
| |
Collapse
|
2
|
Ma Z, Qian C, Yao Z, Tang M, Chen K, Zhao D, Hu P, Zhou T, Cao J. Coexistence of plasmid-mediated tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 in Klebsiella quasipneumoniae. Microbiol Spectr 2024; 12:e0387423. [PMID: 39162556 PMCID: PMC11448383 DOI: 10.1128/spectrum.03874-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/07/2024] [Indexed: 08/21/2024] Open
Abstract
Klebsiella quasipneumoniae is a potential pathogen that has not been studied comprehensively. The emergence of multidrug-resistant (MDR) K. quasipneumoniae, specifically strains resistant to tigecycline and carbapenem, presents a significant challenge to clinical treatment. This investigation aimed to characterize MDR K. quasipneumoniae strain FK8966, co-carrying tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 by plasmids. It was observed that FK8966's MDR was primarily because of the IncHI1B-like plasmid co-carrying tmexCD2-toprJ2 and blaIMP-4, and an IncFIB(K)/IncFII(K) plasmid harboring blaNDM-1. Furthermore, the phylogenetic analysis revealed that IncHI1B-like plasmids carrying tmexCD2-toprJ2 were disseminated among different bacteria, specifically in China. Additionally, according to the comparative genomic analysis, the MDR regions indicated that the tmexCD2-toprJ2 gene cluster was inserted into the umuC gene, while blaIMP-4 was present in transposon TnAs3 linked to the class 1 integron (IntI1). It was also observed that an ΔTn3000 insertion with blaNDM-1 made a novel blaNDM-1 harboring IncFIB(K)/IncFII(K) plasmid. The antimicrobial resistance prevalence and phylogenetic analyses of K. quasipneumoniae strains indicated that FK8966 is a distinct MDR branch of K. quasipneumoniae. Furthermore, CRISPR-Cas system analysis showed that many K. quasipneumoniae CRISPR-Cas systems lacked spacers matching the two aforementioned novel resistance plasmids, suggesting that these resistance plasmids have the potential to disseminate within K. quasipneumoniae. Therefore, the spread of MDR K. quasipneumoniae and plasmids warrants further attention.IMPORTANCEThe emergence of multidrug-resistant K. quasipneumoniae poses a great threat to clinical care, and the situation is exacerbated by the dissemination of tigecycline- and carbapenem-resistant genes. Therefore, monitoring these pathogens and their resistance plasmids is urgent and crucial. This study identified tigecycline- and carbapenem-resistant K. quasipneumoniae strain, FK8966. Furthermore, it is the first study to report the coexistence of tmexCD2-toprJ2, blaIMP-4, and blaNDM-1 in K. quasipneumoniae. Moreover, the CRISPR-Cas system of many K. quasipneumoniae lacks spacers that match the plasmids carried by FK8966, which are crucial for mediating resistance against tigecycline and carbapenems, indicating their potential to disseminate within K. quasipneumoniae.
Collapse
Affiliation(s)
- Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kaixin Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Silva JTP, Santos FF, Valiatti TB, Valêncio A, Ribeiro ÁCDS, Oliveira LFV, Cayô R, Pignatari ACC, Gales AC. Unravelling the genomic characteristics of a Klebsiella quasipneumoniae clinical isolate carrying bla NDM-1. J Glob Antimicrob Resist 2024; 38:302-305. [PMID: 38852850 DOI: 10.1016/j.jgar.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE Despite the increasing reports of blaNDM in Enterobacterales in Brazil, comprehensive whole genome sequencing (WGS) data remain scarce. To address this knowledge gap, our study focuses on the characterization of the genome of an New Delhi Metallo-β-lactamase (NDM)-1-producing Klebsiella quasipneumoniae subsp. quasipneumoniae (KQPN) clinical strain isolated in Brazil. METHODS The antimicrobial susceptibility profile of the A-73.113 strain was performed by agar dilution or broth microdilution following the Brazilian Antimicrobial Susceptibility Testing Committee/European Committee on Antimicrobial Susceptibility Testing recommendations. WGS was performed using the Illumina® NextSeq platform and the generated reads were assembled using the SPAdes software. The sequences obtained were submitted to the bioinformatics pipelines to determine the sequence type, resistome, plasmidome, and virulome. RESULTS The A-73.113 strain was identified as KQPN and was susceptible to polymyxins (MICs, ≤0.25 µg/mL), tigecycline (MIC, 0.5 µg/mL), ciprofloxacin (MIC, 0.5 µg/mL), and levofloxacin (MIC, 1 µg/mL). WGS analysis revealed the presence of genes conferring resistance to β-lactams (blaNDM-1, blaCTX-M-15, blaOXA-9, blaOKP-A-5, blaTEM-1), aminoglycosides [aph(3')-VI, aadA1, aac(6')-Ib], and fluoroquinolones (oqxAB, qnrS1, aac(6')-Ib-cr]. Additionally, the presence of the plasmid replicons Col(pHAD28), IncFIA(HI1), IncFIB(K) (pCAV1099-114), IncFIB(pQil), and IncFII(K), as well as virulence-encoding genes fimABCDEFGHIK (type 1 fimbria), pilW (type IV pili), iutA (aerobactin), entABCDEFS/fepABCDG/fes (Ent siderophores), iroE (salmochelin), and allABCDRS (allantoin utilization) was verified. Furthermore, we found that the A-73.113 strain belongs to ST1040. CONCLUSIONS Here we report the genomic characteristics of an NDM-1-producing KQPN ST1040 strain isolated from blood cultures in Brazil. These data will enhance our comprehension of how this species contributes to the acquisition and dissemination of blaNDM-1 in Brazilian nosocomial settings.
Collapse
Affiliation(s)
- Juliana Thalita P Silva
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil
| | - Fernanda F Santos
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil.
| | - Tiago B Valiatti
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil
| | - André Valêncio
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil
| | - Ághata Cardoso da Silva Ribeiro
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil
| | | | - Rodrigo Cayô
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório de Bacteriologia e Imunologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Diadema SP, Brazil
| | - Antônio Carlos C Pignatari
- Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil
| | - Ana Cristina Gales
- Universidade Federal de São Paulo (UNIFESP), Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil; Universidade Federal de São Paulo (UNIFESP), Laboratório Especial de Microbiologia Clínica (LEMC), Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), São Paulo SP, Brazil
| |
Collapse
|
4
|
Zhang Y, Liu M, Zhang J, Wu J, Hong L, Zhu L, Long J. Large-scale comparative analysis reveals phylogenomic preference of bla NDM-1 and bla KPC-2 transmission among Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107225. [PMID: 38810941 DOI: 10.1016/j.ijantimicag.2024.107225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
blaNDM-1 and blaKPC-2 are responsible for the global increase in carbapenem-resistant Klebsiella pneumoniae, posing a great challenge to public health. However, the impact of phylogenetic factors on the dissemination of blaNDM-1 and blaKPC-2 is not yet fully understood. This study established a global dataset of 4051 blaNDM-1+ and 10,223 blaKPC-2+ K. pneumoniae genomes, and compared their transmission modes on a global scale. The results showed that blaNDM-1+ K. pneumoniae genomes exhibited a broader geographical distribution and higher sequence type (ST) richness than blaKPC-2+ genomes, indicating higher transmissibility of the blaNDM-1 gene. Furthermore, blaNDM-1+ genomes displayed significant differences in ST lineage, antibiotic resistance gene composition, virulence gene composition and genetic environments compared with blaKPC-2+ genomes, suggesting distinct dissemination mechanisms. blaNDM-1+ genomes were predominantly associated with ST147 and ST16, whereas blaKPC-2+ genomes were mainly found in ST11 and ST258. Significantly different accessory genes were identified between blaNDM-1+ and blaKPC-2+ genomes. The preference for blaKPC-2 distribution across certain countries, ST lineages and genetic environments underscores vertical spread as the primary mechanism driving the expansion of blaKPC-2. In contrast, blaNDM-1+ genomes did not display such a strong preference, confirming that the dissemination of blaNDM-1 mainly depends on horizontal gene transfer. Overall, this study demonstrates different phylogenetic drivers for the dissemination of blaNDM-1 and blaKPC-2, providing new insights into their global transmission dynamics.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyue Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangfeng Zhang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jie Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lijuan Hong
- Department Hospital-Acquired Infection Control, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - LiQiang Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Jian C, Ye C, Guo T, Hao J, Ding Y, Xiao X, Xie W, Zeng Z, Liu J. Emergence of aztreonam/avibactam and tigecycline-resistant Pseudomonas putida group Co-producing bla IMP-1, bla AFM-4 and bla OXA-1041 with a novel sequence type ST268 in Southwestern China. Microb Pathog 2024; 192:106668. [PMID: 38697232 DOI: 10.1016/j.micpath.2024.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVES The emergence of carbapenem-resistant Pseudomonas putida (CRPP) has raised public awareness. This study investigated two strains from the Pseudomonas putida group that were resistant to carbapenem, tigecycline, and aztreonam-avibactam (ATM-AVI), with a focus on their microbial and genomic characteristics. METHODS We assessed the antibiotic resistance profile using broth dilution, disk diffusion, and E-test methods. Efflux pump phenotype testing and real-time quantitative PCR were employed to evaluate efflux pump activity in tigecycline resistance, while polymerase chain reaction was utilized to detect common carbapenem genes. Additionally, whole-genome sequencing was performed to analyze genomic characteristics. The transferability of blaIMP-1 and blaAFM-4 was assessed through a conjugation experiment. Furthermore, growth kinetics and biofilm formation were examined using growth curves and crystal violet staining. RESULTS Both strains demonstrated resistance to carbapenem, tigecycline, and ATM-AVI. Notably, NMP can restore sensitivity to tigecycline. Subsequent analysis revealed that they co-produced blaIMP-1, blaAFM-4, tmexCD-toprJ, and blaOXA-1041, belonging to a novel sequence type ST268. Although they were closely related on the phylogenetic tree, they exhibited different levels of virulence. Genetic environment analysis indicated variations compared to prior studies, particularly regarding the blaIMP-1 and blaAFM-4 genes, which showed limited horizontal transferability. Moreover, it was observed that temperature exerted a specific influence on their biological factors. CONCLUSION We initially identified two P. putida ST268 strains co-producing blaIMP-1, blaAFM-4, blaOXA-1041, and tmexCD-toprJ. The resistance to tigecycline and ATM-AVI can be attributed to the presence of multiple drug resistance determinants. These findings underscore the significance of P. putida as a reservoir for novel antibiotic resistance genes. Therefore, it is imperative to develop alternative antibiotic therapies and establish effective monitoring of bacterial resistance.
Collapse
Affiliation(s)
- Chunxia Jian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Caihong Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Tongtong Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Jingchen Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Xue Xiao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Wenchao Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China; Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, China.
| |
Collapse
|
6
|
Li J, Long X, Lin H, Song C, Zhao G, Tang B. Co-existence of tmexCD2-toprJ2 and bla NDM-1 on a single plasmid carried by Raoultella ornithinolytica isolated from public garbage bins. J Glob Antimicrob Resist 2024; 37:1-3. [PMID: 38408560 DOI: 10.1016/j.jgar.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Affiliation(s)
- Jie Li
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Xiaoqian Long
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, China
| | - Guoping Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
7
|
Chen H, Xu H, Liu R, Shen J, Zheng B, Li L. Coexistence of bla IMP-4 and bla SFO-1 in an IncHI5B plasmid harbored by tigecycline-non-susceptible Klebsiella variicola strain. Ann Clin Microbiol Antimicrob 2024; 23:24. [PMID: 38448920 PMCID: PMC10918965 DOI: 10.1186/s12941-024-00680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Klebsiella variicola is considered a newly emerging human pathogen. Clinical isolates of carbapenemase and broad-spectrum β-lactamase-producing K. variicola remain relatively uncommon. A strain of K. variicola 4253 was isolated from a clinical sample, and was identified to carry the blaIMP-4 and blaSFO-1 genes. This study aims to discern its antibiotic resistance phenotype and genomic characteristics. METHODS Species identification was conducted using MALDI-TOF/MS. PCR identification confirmed the presence of the blaIMP-4 and blaSFO-1 genes. Antibiotic resistance phenotype and genomic characteristics were detected by antimicrobial susceptibility testing and whole-genome sequencing. Plasmid characterization was carried out through S1-PFGE, conjugation experiments, Southern blot, and comparative genomic analysis. RESULTS K. variicola 4253 belonged to ST347, and demonstrated resistance to broad-spectrum β-lactamase drugs and tigecycline while being insensitive to imipenem and meropenem. The blaIMP-4 and blaSFO-1 genes harbored on the plasmid p4253-imp. The replicon type of p4253-imp was identified as IncHI5B, representing a multidrug-resistant plasmid capable of horizontal transfer and mediating the dissemination of drug resistance. The blaIMP-4 gene was located on the In809-like integrative element (Intl1-blaIMP-4-aacA4-catB3), which circulates in Acinetobacter and Enterobacteriaceae. CONCLUSIONS This study reports the presence of a strain of K. variicola, which is insensitive to tigecycline, carrying a plasmid harboring blaIMP-4 and blaSFO-1. It is highly likely that the strain acquired this plasmid through horizontal transfer. The blaIMP-4 array (Intl1-blaIMP-4-aacA4-catB3) is also mobile in Acinetobacter and Enterobacteriaceae. So it is essential to enhance clinical awareness and conduct epidemiological surveillance on multidrug-resistant K. variicola, conjugative plasmids carrying blaIMP-4, and the In809 integrative element.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Ruishan Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China.
| |
Collapse
|
8
|
Yao H, Zhang T, Peng K, Peng J, Liu X, Xia Z, Chi L, Zhao X, Li S, Chen S, Qin S, Li R. Conjugative plasmids facilitate the transmission of tmexCD2-toprJ2 among carbapenem-resistant Klebsiella pneumoniae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167373. [PMID: 37758131 DOI: 10.1016/j.scitotenv.2023.167373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a great threat to global public health. The emergence of tmexCD-toprJ greatly weakened the efficacy of tigecycline in the treatment of CRKP infections. In this study, we did a comprehensive investigation of the prevalence and genomic features of tmexCD-toprJ in clinical CRKP from 2018 to 2020 in Henan province, China. The results demonstrated tmexCD-toprJ was at a low prevalence in CRKP from patients (7/2031, 0.34 %). Among the seven tmexCD-toprJ positive CRKP, KP18-29 that carried tmexCD1-toprJ1, blaNDM-1 and mcr-8.2 was resistant to tigecycline, carbapenem and colistin simultaneously. While, tmexCD2-toprJ2 together with one or two carbapenemase genes were detected in the remaining strains. Four strains (KP18-231, KP18-2110-2, KP19-3023 and KP19-3088) isolated at different times but shared the same sequence type (ST) 2667 exhibited high genomic similarity, indicating the clonal dissemination of CRKP ST2667 co-producing KPC-2 and TMexCD-TOprJ. Notably, conjugative transmission of the IncFrepB(R1701) plasmid co-harboring tmexCD2-toprJ2 and blaKPC-2 among clinical CRKP isolates belonging to different STs (ST2667, ST978 and ST147) revealed further propagation of tmexCD-toprJ among K. pneumoniae. Such IncFrepB(R1701) plasmids pose a substantial threat to public health due to their mobile resistance to both tigecycline and carbapenem. Online data mining showed isolates carried both carbapenemase genes and tmexCD-toprJ were dominantly isolated from humans, and isolates of animal origins usually carried mcr genes and tmexCD-toprJ, suggesting that these critical resistance genes co-existed in diverse niches. Global surveillance of K. pneumoniae co-harboring tmexCD-toprJ and mcr/carbapenemase genes in various settings with a One Health strategy was warranted.
Collapse
Affiliation(s)
- Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Tingting Zhang
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Peng
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Junke Peng
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziwei Xia
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Leizi Chi
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyu Zhao
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shangshang Qin
- XNA Platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ruichao Li
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
9
|
Chen SJ, Zhang WQ, Lin YL, Zeng YB, Chen ST, Wu S, Xun Z, Yang B. High Prevalence of Carbapenem-Resistant Enterobacterales Colonization Among Intensive Care Unit Patients in a Tertiary Hospital, China. Microb Drug Resist 2023; 29:568-575. [PMID: 37733305 DOI: 10.1089/mdr.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Intestinal colonization with carbapenem-resistant Enterobacterales (CRE) has been shown as a significant risk factor for subsequent CRE infections, especially in intensive care units (ICUs). The aim of this study was to determine the prevalence of intestinal CRE colonization among ICU patients in a Chinese tertiary hospital. Fecal sample screenings for CRE were performed on ICU patients weekly. Antibiotic-susceptibility profile of CRE strains was determined using the Vitek-2 analysis system and broth microdilution method. The carbapenemases of all isolates were determined by phenotypes and genotypes. Clonal relatedness was analyzed by pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing was used to identify the multilocus sequence type (ST), plasmid replicons, and insertion sequences (ISs) of isolates. The overall colonization rate of CRE was 40.4% (82/203). A total of 84 CRE strains were detected, mostly with Klebsiella pneumoniae (92.9%). Antibiotic susceptibility testing profile revealed that 84 CRE strains were resistant to most antibiotics except for tigecycline and colistin. The carbapenemase-encoding genes including blaKPC-2, blaNDM-1, and blaIMP-4 were detected, and blaKPC-2 was the predominant genotype (90.8%). A total of 9 STs were identified among 84 CRE strains, and ST11 was the most common type (83.3%). A variety of mobile genetic elements, including plasmids and ISs, were detected via online tool prediction. PFGE analysis of the 78 K. pneumoniae strains showed 8 different pulsotypes, and pulsotype A was highly prevalent. This study found that the prevalence of CRE colonization was alarmingly high in the ICU, and that effective infection control measures are urgently needed to prevent the dissemination of CRE.
Collapse
Affiliation(s)
- Shan-Jian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wei-Qing Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yu-Lan Lin
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong-Bin Zeng
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shou-Tao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shu Wu
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Yang
- Department of Laboratory Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Jiang M, Li H, Liu X, Shen N, Zhou Y, Song W, Wang X, Cao Q, Zhou Z. Genomic Analysis Revealed the International and Domestic Transmission of Carbapenem-Resistant Klebsiella pneumoniae in Chinese Pediatric Patients. Microbiol Spectr 2023; 11:e0321322. [PMID: 36856415 PMCID: PMC10101082 DOI: 10.1128/spectrum.03213-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/29/2022] [Indexed: 03/02/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a severe threat to public health worldwide. Based on the genomic analysis of 198 CRKP isolates collected at Shanghai Children's Medical Center over the last 8 years (2013 to 2021), we reported the clinical risk, genetic diversity, and prevalence of antimicrobial resistance (AMR) of CRKP in pediatric patients at the genomic level. We found that the blaNDM genes were the predominant carbapenemase genes, followed by blaKPC-2 and blaIMP. All of the carbapenemases were disseminated mainly by four main types of plasmids, among which one plasmid was associated with a higher risk of bloodstream infections. Notably, we tracked disease outbreaks caused by recent introductions of ST14 CRKP from southeast Asia or western countries, and we reported frequent, repetitive introductions of ST11 from other domestic hospitals that were associated interhospital movement of the patients. The cocirculation of K. pneumoniae and AMR plasmids in hospitals highlights the importance of genome sequencing for monitoring and controlling CRKP infections. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection in pediatric patients differs from that in adults patients in terms of both genetic and phenotypic features, which remain to be elucidated. We present a summary of prevalent CRKP isolates from Chinese pediatric patients over 8 years, demonstrating the prevalence and clinical importance of New Delhi metallo-β-lactamase genes in pediatric patients, mainly describing the genomic features of two predominant CRKP clones (ST11 and ST14) in Chinese children, and identifying four carbapenemase-encoding plasmids that contribute to the transmission of most carbapenemase genes in hospitals. Overall, our research provides valuable information about the international and domestic transmission of CRKP isolates that are prevalent in Chinese children and shows the urgent need for genome sequencing-based surveillance systems for monitoring the transmission of CRKP.
Collapse
Affiliation(s)
- Muxiu Jiang
- Department of Infectious Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Li
- Pasteurien College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou, Jiangsu, China
| | - Xiao Liu
- Pasteurien College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Nan Shen
- Department of Infectious Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanjie Zhou
- Department of Infectious Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Song
- Department of Infectious Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Cao
- Department of Infectious Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Anyanwu MU, Nwobi OC, Okpala COR, Ezeonu IM. Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Front Microbiol 2022; 13:808744. [PMID: 35979498 PMCID: PMC9376449 DOI: 10.3389/fmicb.2022.808744] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Mobile tigecycline resistance (MTR) threatens the clinical efficacy of the salvage antibiotic, tigecycline (TIG) used in treating deadly infections in humans caused by superbugs (multidrug-, extensively drug-, and pandrug-resistant bacteria), including carbapenem- and colistin-resistant bacteria. Currently, non-mobile tet(X) and mobile plasmid-mediated transmissible tet(X) and resistance-nodulation-division (RND) efflux pump tmexCD-toprJ genes, conferring high-level TIG (HLT) resistance have been detected in humans, animals, and environmental ecosystems. Given the increasing rate of development and spread of plasmid-mediated resistance against the two last-resort antibiotics, colistin (COL) and TIG, there is a need to alert the global community on the emergence and spread of plasmid-mediated HLT resistance and the need for nations, especially developing countries, to increase their antimicrobial stewardship. Justifiably, MTR spread projects One Health ramifications and portends a monumental threat to global public and animal health, which could lead to outrageous health and economic impact due to limited options for therapy. To delve more into this very important subject matter, this current work will discuss why MTR is an emerging health catastrophe requiring urgent One Health global intervention, which has been constructed as follows: (a) antimicrobial activity of TIG; (b) mechanism of TIG resistance; (c) distribution, reservoirs, and traits of MTR gene-harboring isolates; (d) causes of MTR development; (e) possible MTR gene transfer mode and One Health implication; and (f) MTR spread and mitigating strategies.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Microbiology Unit, Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Obichukwu Chisom Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ifeoma M. Ezeonu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|