1
|
Oishi Y, Toyoda M, Hano N, Motozono C, Ueno T, Takafuji M. Polycyclic aromatic polymer nanoparticles show potent infectious particle adsorption capability. J Mater Chem B 2025; 13:568-576. [PMID: 39565333 DOI: 10.1039/d4tb01793e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Nonspecific viral adsorption by polymer nanoparticles is more economical and superior in terms of operating cost and energy efficiency than viral adsorption using virus-specific antibodies and filtration techniques involving size exclusion in the order of tens of nanometres. In this study, we synthesised four types of polycyclic aromatic polymer (ArP) nanoparticles with different structures and evaluated their virus adsorption capability for infectious particles of the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ArP nanoparticles with a diameter of approximately 500 nm were prepared by one-pot precipitation polymerisation using structural isomers of bifunctional dihydroxynaphthalene (1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene) as phenol monomers, as well as 3-hydroxybenzoic acid and 3-aminophenol as comonomers to introduce carboxylic acid and amino groups, respectively. This wide range of phenolic monomers offers a powerful molecular design capability, enabling the optimisation of surface properties for the adsorption of various infectious virus particles. The virus adsorption capacity of the ArP nanoparticles exceeded 20 000 plaque-forming units and was found to be correlated with the nitrogen (primary and secondary amines) and quinone contents on the ArP nanoparticle surface. Furthermore, a polyvinylidene difluoride membrane filter uniformly coated with the ArP nanoparticles could remove viruses by filtration in a flow system.
Collapse
Affiliation(s)
- Yudai Oishi
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Mako Toyoda
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Nanami Hano
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Makoto Takafuji
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Katzmarzyk M, Naughton R, Sitaras I, Jacobsen H, Higdon MM, Deloria Knoll M. Evaluating the Quality of Studies Assessing COVID-19 Vaccine Neutralizing Antibody Immunogenicity. Vaccines (Basel) 2024; 12:1238. [PMID: 39591141 PMCID: PMC11598362 DOI: 10.3390/vaccines12111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Objective: COVID-19 vaccine-neutralizing antibodies provide early data on potential vaccine effectiveness, but their usefulness depends on study reliability and reporting quality. Methods: We systematically evaluated 50 published post-vaccination neutralizing antibody studies for key parameters that determine study and data quality regarding sample size, SARS-CoV-2 infection, vaccination regimen, sample collection period, demographic characterization, clinical characterization, experimental protocol, live virus and pseudo-virus details, assay standardization, and data reporting. Each category was scored from very high to low or unclear quality, with the lowest score determining the overall study quality score. Results: None of the studies attained an overall high or very high score, 8% (n = 4) attained moderate, 42% (n = 21) low, and 50% (n = 25) unclear. The categories with the fewest studies assessed as ≥ high quality were SARS-CoV-2 infection (42%), sample size (30%), and assay standardization (14%). Overall quality was similar over time. No association between journal impact factor and quality score was found. Conclusions: We found that reporting in neutralization studies is widely incomplete, limiting their usefulness for downstream analyses.
Collapse
Affiliation(s)
- Maeva Katzmarzyk
- Department of Viral Immunology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | | | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Henning Jacobsen
- Department of Viral Immunology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Melissa M. Higdon
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Maria Deloria Knoll
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Nkinda L, Barabona G, Ngare I, Nkuwi E, Kamori D, Msafiri F, Kunambi PP, Osati E, Kidenya BR, Chuwa H, Kinasa G, Hassan FE, Judicate GP, Gasper J, Kisuse J, Mfinanga S, Senkoro M, Ueno T, Lyamuya E, Balandya E. Evaluation of cross-neutralizing immunity following COVID-19 primary series vaccination during the Omicron surge in Tanzania. J Med Virol 2024; 96:e29822. [PMID: 39056238 DOI: 10.1002/jmv.29822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
COVID-19 vaccine became available in Tanzania during the first wave of the Omicron variant. During that time community seroprevalence of SARS-CoV-2 was already at 50%-80%. To date, it remains largely unknown whether ongoing vaccination with the primary series vaccines has any meaningful immune-boosting effects against newer Omicron subvariants. Therefore, we tested cross-neutralizing capacity of antibodies elicited by infection, vaccination, or both against SARS-CoV-2 Omicron subvariants BA.1, and the newer subvariants BQ.1.1 and XBB.1.5. that were unexperienced by this population. Participants who were either SARS-CoV-2 infected-only (n = 28), infected vaccinated (n = 22), or vaccinated-only (n = 73) were recruited from Dar-es-Salaam, Tanzania, between April and December 2022. Plasma 50% neutralization titers (NT50) against SARS-CoV-2 wild-type strain and Omicron subvariants were quantified by a lentiviral-based pseudo-virus assay. Percentage of participants with neutralizing activity against WT and BA.1 was high (>85%) but was reduced against BQ.1.1 (64%-77%) and XBB.1.5 (35%-68%) subvariants. The low median cross-neutralization titer was slightly higher in the infected vaccinated group compared to vaccine-only group against BQ.1.1 (NT50 148 vs. 85, p = 0.032) and XBB.1.5 (NT50 85 vs. 37 p = 0.022) subvariants. In contrast, vaccine-boost among the infected vaccinated did not result to increased cross-neutralization compared to infected-only participants (BQ.1.1 [NT50 of 148 vs. 100, p = 0.501] and XBB.1.5 [NT50 86 vs. 45, p = 0.474]). We report severely attenuated neutralization titers against BQ.1.1 and XBB.1.5 subvariants among vaccinated participants, which marginally improved in the infected vaccinated participants. Our findings call for further studies to evaluate effectiveness of the primary series vaccines in preventing severe infection and mortality against the newer variants.
Collapse
Affiliation(s)
- Lilian Nkinda
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Godfrey Barabona
- Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Isaac Ngare
- Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Emmanuel Nkuwi
- Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Microbiology and Parasitology, University of Dodoma, Dodoma, Tanzania
| | - Doreen Kamori
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
- Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Frank Msafiri
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Ponsian P Kunambi
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Elisha Osati
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
- Muhimbili National Hospital, Dar-es-Salaam, Tanzania
| | - Benson R Kidenya
- Department of Biochemistry and Molecular Biology, Catholic University of Health and Allied Sciences- Bugando, Mwanza, Tanzania
| | | | | | - Frank E Hassan
- National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania
| | - George P Judicate
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
- National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania
| | - Joseph Gasper
- Temeke Regional Referral Hospital, Dar-es-Salaam, Tanzania
| | - Juma Kisuse
- National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania
| | - Sayoki Mfinanga
- National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania
| | - Mbazi Senkoro
- National Institution for Medical Research, Muhimbili Centre, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
- Joint Research Centre for Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Eligius Lyamuya
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Emmanuel Balandya
- Campus College of Medicine, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| |
Collapse
|
4
|
Guo H, Ha S, Botten JW, Xu K, Zhang N, An Z, Strohl WR, Shiver JW, Fu TM. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024; 16:697. [PMID: 38793580 PMCID: PMC11125895 DOI: 10.3390/v16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.
Collapse
Affiliation(s)
- Hailong Guo
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
5
|
Barabona G, Ngare I, Kamori D, Nkinda L, Kosugi Y, Mawazo A, Ekwabi R, Kinasa G, Chuwa H, Sato K, Sunguya B, Ueno T. Neutralizing immunity against coronaviruses in Tanzanian health care workers. Sci Rep 2024; 14:5508. [PMID: 38448564 PMCID: PMC10917759 DOI: 10.1038/s41598-024-55989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
The ongoing vaccination efforts and exposure to endemic and emerging coronaviruses can shape the population's immunity against this group of viruses. In this study, we investigated neutralizing immunity against endemic and emerging coronaviruses in 200 Tanzanian frontline healthcare workers (HCWs). Despite low vaccination rates (19.5%), we found a high SARS-CoV-2 seroprevalence (94.0%), indicating high exposure in these HCWs. Next, we determined the neutralization capacity of antisera against human coronavirus NL63, and 229E, SARS-CoV-1, MERS-CoV and SARS-CoV-2 (including Omicron subvariants: BA.1, BQ.1.1 and XBB.1.5) using pseudovirus neutralization assay. We observed a broad range of neutralizing activity in HCWs, but no neutralization activity detected against MERS-CoV. We also observed a strong correlation between neutralizing antibody titers for SARS-CoV-2 and SARS-CoV-1, but not between other coronaviruses. Cross-neutralization titers against the newer Omicron subvariants, BQ.1.1 and XBB.1.5, was significantly reduced compared to BA.1 and BA.2 subvariants. On the other hand, the exposed vaccinated HCWs showed relatively higher median cross-neutralization titers against both the newer Omicron subvariants and SARS-CoV-1, but did not reach statistical significance. In summary, our findings suggest a broad range of neutralizing potency against coronaviruses in Tanzanian HCWs with detectable neutralizing immunity against SARS-CoV-1 resulting from SARS-CoV-2 exposure.
Collapse
Affiliation(s)
- Godfrey Barabona
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Isaac Ngare
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Doreen Kamori
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Lilian Nkinda
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ambele Mawazo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Rayi Ekwabi
- Amana Regional Referral Hospital, Dar es Salaam, Tanzania
| | | | | | - Kei Sato
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Bruno Sunguya
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Community Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| |
Collapse
|