1
|
Thitirungreangchai T, Roytrakul S, Aunpad R. Deciphering the Intracellular Action of the Antimicrobial Peptide A11 via an In-Depth Analysis of Its Effect on the Global Proteome of Acinetobacter baumannii. ACS Infect Dis 2024; 10:2795-2813. [PMID: 39075773 PMCID: PMC11320580 DOI: 10.1021/acsinfecdis.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
The potential antimicrobial activity and low propensity to induce the development of bacterial resistance have rendered antimicrobial peptides (AMPs) as novel and ideal candidate therapeutic agents for the treatment of infections caused by drug-resistant pathogenic bacteria. The targeting of bacterial membranes by AMPs has been typically considered their sole mode of action; however, increasing evidence supports the existence of multiple and complementary functions of AMPs that result in bacterial death. An in-depth characterization of their mechanism of action could facilitate further research and development of AMPs with higher potency. The current study employs biophysics and proteomics approaches to unveil the mechanisms underlying the antibacterial activity of A11, a potential candidate AMP, against Acinetobacter baumannii, a leading cause of hospital-acquired infections (HAIs) and consequently, a serious global threat. A11 peptide was found to induce membrane depolarization to a high extent, as revealed by flow cytometry and electron microscopy analyses. The prompt intracellular penetration of A11 peptide, observed using confocal microscopy, was found to occur concomitantly with a very low degree of membrane lysis, suggesting that its mode of action predominantly involves a nonlytic killing mechanism. Quantitative proteomics analysis employed for obtaining insights into the mechanisms underlying the antimicrobial activity of A11 peptide revealed that it disrupted energy metabolism, interfered with protein homeostasis, and inhibited fatty acid synthesis that is essential for cell membrane integrity; all these impacted the cellular functions of A. baumannii. A11 treatment also impacted signal transduction associated with the regulation of biofilm formation, hindered the stress response, and influenced DNA repair processes; these are all crucial survival mechanisms of A. baumannii. Additionally, robust antibacterial activity was exhibited by A11 peptide against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates of A. baumannii; moreover, A11 peptide exhibited synergy with levofloxacin and minocycline as well as low propensity for inducing resistance. Taken together, the findings emphasize the therapeutic potential of A11 peptide as an antibacterial agent against drug-resistant A. baumannii and underscore the need for further investigation.
Collapse
Affiliation(s)
- Thanit Thitirungreangchai
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional
Proteomics Technology Laboratory, National Center for Genetic Engineering
and Biotechnology, National Science and
Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ratchaneewan Aunpad
- Graduate
Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Hao Y, Liu X, Fu H, Shao X, Cai W. PGAT-ABPp: harnessing protein language models and graph attention networks for antibacterial peptide identification with remarkable accuracy. Bioinformatics 2024; 40:btae497. [PMID: 39120878 PMCID: PMC11338452 DOI: 10.1093/bioinformatics/btae497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024] Open
Abstract
MOTIVATION The emergence of drug-resistant pathogens represents a formidable challenge to global health. Using computational methods to identify the antibacterial peptides (ABPs), an alternative antimicrobial agent, has demonstrated advantages in further drug design studies. Most of the current approaches, however, rely on handcrafted features and underutilize structural information, which may affect prediction performance. RESULTS To present an ultra-accurate model for ABP identification, we propose a novel deep learning approach, PGAT-ABPp. PGAT-ABPp leverages structures predicted by AlphaFold2 and a pretrained protein language model, ProtT5-XL-U50 (ProtT5), to construct graphs. Then the graph attention network (GAT) is adopted to learn global discriminative features from the graphs. PGAT-ABPp outperforms the other fourteen state-of-the-art models in terms of accuracy, F1-score and Matthews Correlation Coefficient on the independent test dataset. The results show that ProtT5 has significant advantages in the identification of ABPs and the introduction of spatial information further improves the prediction performance of the model. The interpretability analysis of key residues in known active ABPs further underscores the superiority of PGAT-ABPp. AVAILABILITY AND IMPLEMENTATION The datasets and source codes for the PGAT-ABPp model are available at https://github.com/moonseter/PGAT-ABPp/.
Collapse
Affiliation(s)
- Yuelei Hao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xuyang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Canas JJ, Arregui SW, Zhang S, Knox T, Calvert C, Saxena V, Schwaderer AL, Hains DS. DEFA1A3 DNA gene-dosage regulates the kidney innate immune response during upper urinary tract infection. Life Sci Alliance 2024; 7:e202302462. [PMID: 38580392 PMCID: PMC10997819 DOI: 10.26508/lsa.202302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose-dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil- and collecting duct intercalated cell-derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage-dependent manner.
Collapse
Affiliation(s)
- Jorge J Canas
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel W Arregui
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaobo Zhang
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Taylor Knox
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christi Calvert
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay Saxena
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew L Schwaderer
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David S Hains
- Division of Pediatric Nephrology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA
- Kidney and Urology Translational Research Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Li D, Guo R, Chen F, Wang J, Wang F, Wan Y. Genetically Engineered Goats as Efficient Mammary Gland Bioreactors for Production of Recombinant Human Neutrophil Peptide 1 Using CRISPR/Cas9. BIOLOGY 2024; 13:367. [PMID: 38927247 PMCID: PMC11200946 DOI: 10.3390/biology13060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Mammary gland bioreactors are promising methods for recombinant protein production. Human neutrophil peptide 1 (HNP1) exhibits antibacterial and immune-modulating properties. This study aims to establish a method to generate goats secreting HNP1 using the mammary gland as bioreactors. HNP1 transgenic goats were generated by using CRISPR/Cas9 technology to knock-in (KI) the HNP1 sequence into exon 7 of the goat β-casein (CSN2) gene under the control of the CSN2 promoter. One-cell stage embryos were cytoplasmically injected with a mixture of Cas9 mRNA, sgRNA, and a homologous plasmid including the T2A-HNP1 sequences, followed by transfer to recipient goats. A total of 22 live offspring goats were delivered, and 21 of these goats (95.45%) exhibited targeted edits at the CSN2 locus, and 2 female goats (9.09%) demonstrated successful HNP1 integration. Western blot and ELISA analyses confirmed the presence of HNP1 protein at high levels in the milk of these HNP1-positive goats, with mean concentrations of 22.10 µg/mL and 0.0092 µg/mL during the initial 60 days of lactation. Furthermore, milk from these transgenic goats exhibited notable antibacterial activity against Escherichia coli and Staphylococcus aureus, demonstrating the functionality of the expressed HNP1 protein. In conclusion, we established an efficient method for developing new transgenic goat lines as a mammary gland bioreactor, and the bioactive HNP1 protein secreted by the transgenic goat has the potential to combat microbial resistance.
Collapse
Affiliation(s)
- Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| | - Rihong Guo
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China; (R.G.); (F.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Chen
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China; (R.G.); (F.C.)
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingang Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.L.); (J.W.)
| |
Collapse
|
5
|
Roca-Pinilla R, Lisowski L, Arís A, Garcia-Fruitós E. The future of recombinant host defense peptides. Microb Cell Fact 2022; 21:267. [PMID: 36544150 PMCID: PMC9768982 DOI: 10.1186/s12934-022-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been produced by chemical synthesis, which is expensive and requires the use of toxic reagents, hindering the large-scale development of HDPs. Alternatively, HDPs can be produced recombinantly to overcome these limitations. Their antimicrobial nature, however, can make them toxic to the hosts of recombinant production. In this review we explore the different strategies that are used to fine-tune their activities, bioengineer them, and optimize the recombinant production of HDPs in various cell factories.
Collapse
Affiliation(s)
- Ramon Roca-Pinilla
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia
| | - Leszek Lisowski
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia ,grid.415641.30000 0004 0620 0839Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Anna Arís
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| |
Collapse
|
6
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|