1
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies. Appl Microbiol Biotechnol 2024; 108:3. [PMID: 38159120 DOI: 10.1007/s00253-023-12975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic zoonotic pathogenic bacterium that causes nosocomial infections ranging from minor to life-threatening. The clinical importance of this zoonotic pathogen is rapidly increasing due to the development of multiple resistance mechanisms and the synthesis of numerous virulence factors. Although no flagellum-mediated motility exists, it may move through twitching or surface-associated motility. Twitching motility is a coordinated multicellular movement caused by the extension, attachment, and retraction of type IV pili, which are involved in surface adherence and biofilm formation. Surface-associated motility is a kind of movement that does not need appendages and is most likely driven by the release of extra polymeric molecules. This kind of motility is linked to the production of 1,3-diaminopropane, lipooligosaccharide formation, natural competence, and efflux pump proteins. Since A. baumannii's virulence qualities are directly tied to motility, it is possible that its motility may be used as a specialized preventative or therapeutic measure. The current review detailed the signaling mechanism and involvement of various proteins in controlling A. baumannii motility. As a result, we have thoroughly addressed the role of natural and synthetic compounds that impede A. baumannii motility, as well as the underlying action mechanisms. Understanding the regulatory mechanisms behind A. baumannii's motility features will aid in the development of therapeutic drugs to control its infection. KEY POINTS: • Acinetobacter baumannii exhibits multiple resistance mechanisms. • A. baumannii can move owing to twitching and surface-associated motility. • Natural and synthetic compounds can attenuate A. baumannii motility.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Bisaro F, Jackson-Litteken CD, McGuffey JC, Hooppaw AJ, Bodrog S, Jebeli L, Janet-Maitre M, Ortiz-Marquez JC, van Opijnen T, Scott NE, Di Venanzio G, Feldman MF. Diclofenac sensitizes multi-drug resistant Acinetobacter baumannii to colistin. PLoS Pathog 2024; 20:e1012705. [PMID: 39571043 PMCID: PMC11620633 DOI: 10.1371/journal.ppat.1012705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii. Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a non-steroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin minimal inhibitory concentration (MIC) of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro, implying a stronger synergistic effect in vivo compared to in vitro. A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that diclofenac can be repurposed with colistin to treat MDR A. baumannii.
Collapse
Affiliation(s)
- Fabiana Bisaro
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Clay D. Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Jenna C. McGuffey
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Anna J. Hooppaw
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Sophie Bodrog
- Biology Department, Boston College; Chestnut Hill, Massachusetts, United States of America
| | - Leila Jebeli
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne, Australia
| | - Manon Janet-Maitre
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Juan C. Ortiz-Marquez
- Biology Department, Boston College; Chestnut Hill, Massachusetts, United States of America
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne, Australia
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Gopikrishnan M, Doss GPC. Targeting PilA in Acinetobacter baumannii: A Computational Approach for Anti-Virulent Compound Discovery. Mol Biotechnol 2024:10.1007/s12033-024-01300-9. [PMID: 39414707 DOI: 10.1007/s12033-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Acinetobacter baumannii (A. baumannii) has emerged as a critical global pathogen due to its ability to acquire resistance traits. This bacterium exhibits two distinct forms of motility: twitching, mediated by type IV pili (T4P), and surface-associated motility, independent of appendages. T4P is crucial in various bacterial species, facilitating twitching motility, biofilm formation, and host-cell adhesion. The synthesis of T4P is a common feature among Gram-negative pathogens, particularly A. baumannii, suggesting that PilA could be a viable target for biofilm-related treatments. This study aims to develop drug molecules to mitigate A. baumannii virulence by targeting PilA. Using Schrodinger software, we screened 60,766 compounds from the CMNPD, ChemDiv, and Enamine antibacterial databases through high-throughput virtual screening. The top two compounds from each database, identified through extra precision (XP) mode, were subjected to further studies. Among the six compounds identified (CMNPD18469, CMNPD20698, Z2377302405, Z2378175729, N039-0021, and N098-0051), docking scores ranged from - 5.0 to - 7.5 kcal/mol. Subsequently, we conducted 300 ns molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis of the PilA-ligand complexes. Analysis of the simulation trajectories indicated structural stability and consistent behavior of the PilA-ligand complexes in a dynamic environment. Notably, the PilA-N098-0051 complex exhibited enhanced stability and robust binding interactions, underscoring its potential as a therapeutic agent. These findings suggest that the identified compounds, particularly N098-0051, hold promise as potent molecules targeting PilA, necessitating further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
O'Hara MT, Shimozono TM, Dye KJ, Harris D, Yang Z. Surface hydrophilicity promotes bacterial twitching motility. mSphere 2024; 9:e0039024. [PMID: 39194233 PMCID: PMC11423576 DOI: 10.1128/msphere.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Twitching motility is a form of bacterial surface translocation powered by the type IV pilus (T4P). It is frequently analyzed by interstitial colony expansion between agar and the polystyrene surfaces of petri dishes. In such assays, the twitching motility of Acinetobacter nosocomialis was observed with MacConkey but not Luria-Bertani (LB) agar media. One difference between these two media is the presence of bile salts as a selective agent in MacConkey but not in LB. Here, we demonstrate that the addition of bile salts to LB allowed A. nosocomialis to display twitching. Similarly, bile salts enhanced the twitching of Acinetobacter baumannii and Pseudomonas aeruginosa in LB. These observations suggest that there is a common mechanism, whereby bile salts enhance bacterial twitching and promote interstitial colony expansion. Bile salts disrupt lipid membranes and apply envelope stress as detergents. Surprisingly, their stimulatory effect on twitching appears not to be related to a bacterial physiological response to stressors. Rather, it is due to their ability to alter the physicochemical properties of a twitching surface. We observed that while other detergents promoted twitching like bile salts, stresses applied by antibiotics, including the outer membrane-targeting polymyxin B, did not enhance twitching motility. More importantly, bacteria displayed increased twitching on hydrophilic surfaces such as those of glass and tissue culture-treated polystyrene plastics, and bile salts no longer stimulated twitching on these surfaces. Together, our results show that altering the hydrophilicity of a twitching surface significantly impacts T4P functionality. IMPORTANCE The bacterial type IV pilus (T4P) is a critical virulence factor for many medically important pathogens, some of which are prioritized by the World Health Organization for their high levels of antibiotic resistance. The T4P is known to propel bacterial twitching motility, the analysis of which provides a convenient assay for T4P functionality. Here, we show that bile salts and other detergents augment the twitching of multiple bacterial pathogens. We identified the underlying mechanism as the alteration of surface hydrophilicity by detergents. Consequently, hydrophilic surfaces like those of glass or plasma-treated polystyrene promote bacterial twitching, bypassing the requirement for detergents. The implication is that surface properties, such as those of tissues and medical implants, significantly impact the functionality of bacterial T4P as a virulence determinant. This offers valuable insights for developing countermeasures against the colonization and infection by bacterial pathogens of critical importance to human health on a global scale.
Collapse
Affiliation(s)
- Megan T O'Hara
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Tori M Shimozono
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Keane J Dye
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David Harris
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Bello-López E, Escobedo-Muñoz AS, Guerrero G, Cruz-Córdova A, Garza-González E, Hernández-Castro R, Zarain PL, Morfín-Otero R, Volkow P, Xicohtencatl-Cortes J, Cevallos MA. Acinetobacter pittii: the emergence of a hospital-acquired pathogen analyzed from the genomic perspective. Front Microbiol 2024; 15:1412775. [PMID: 38989032 PMCID: PMC11233732 DOI: 10.3389/fmicb.2024.1412775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024] Open
Abstract
Acinetobacter pittii has increasingly been associated with several types of hospital-acquired severe infections. Genes implicated in carbapenem resistance, tigecycline resistance, or genes encoding extended spectrum cephalosporinases, such as blaADC, are commonly found in isolates implicated in these infections. A. pittii strains that are pandrug resistant have occasionally been identified. Food for human consumption, animals and plants are environmental sources of this pathogen. An alarming situation is that A. pitti has been identified as responsible for outbreaks in different regions worldwide. In this study, 384 genomes of A. pittii were analyzed, comprising sequences from clinical and non-clinical origins from 32 countries. The objective was to investigate if clinical strains possess genetic traits facilitating hospital adaptation. Results indicate significant genomic variability in terms of size and gene content among A. pittii isolates. The core genome represents a small portion (25-36%) of each isolate's genome, while genes associated with antibiotic resistance and virulence predominantly belong to the accessory genome. Notably, antibiotic resistance genes are encoded by a diverse array of plasmids. As the core genome between environmental and hospital isolates is the same, we can assume that hospital isolates acquired ARGs due to a high selective pressure in these settings. The strain's phylogeographic distribution indicates that there is no geographical bias in the isolate distribution; isolates from different geographic regions are dispersed throughout a core genome phylogenetic tree. A single clade may include isolates from extremely distant geographical areas. Furthermore, strains isolated from the environment or animal, or plant sources frequently share the same clade as hospital isolates. Our analysis showed that the clinical isolates do not already possess specific genes, other than antibiotic-resistant genes, to thrive in the hospital setting.
Collapse
Affiliation(s)
- Elena Bello-López
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Cuernavaca, Mexico
| | - Ana Sofía Escobedo-Muñoz
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Cuernavaca, Mexico
| | - Gabriela Guerrero
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Unidad de Análisis Bioinformáticos, Cuernavaca, Mexico
| | - Ariadnna Cruz-Córdova
- Unidad de Enfermedades Infecciosas, Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Facultad de Medicina/Hospital Universitario Dr. José Eleuterio González, Departamento de Bioquímica y Medicina Molecular, Monterrey, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Patricia Lozano Zarain
- Benemérita Universidad Autónoma de Puebla, Instituto de Ciencias, Centro de Investigaciones en Ciencias Microbiológicas, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Puebla, Mexico
| | - Rayo Morfín-Otero
- Instituto de Patología Infecciosa y Experimental, Universidad de Guadalajara, Guadalajara, Mexico
| | - Patricia Volkow
- Instituto Nacional de Cancerología, Departamento de Enfermedades Infecciosas, Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Unidad de Enfermedades Infecciosas, Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Miguel A Cevallos
- Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Cuernavaca, Mexico
| |
Collapse
|
6
|
Bisaro F, Jackson-Litteken CD, McGuffey JC, Hooppaw AJ, Bodrog S, Jebeli L, Ortiz-Marquez JC, van Opijnen T, Scott NE, Di Venanzio G, Feldman MF. Diclofenac sensitizes multi-drug resistant Acinetobacter baumannii to colistin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594771. [PMID: 38798593 PMCID: PMC11118529 DOI: 10.1101/2024.05.17.594771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii . Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a nonsteroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin, in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin MIC of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro , implying a stronger synergistic effect in vivo compared to in vitro . A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that the diclofenac can be repurposed with colistin to treat MDR A. baumannii .
Collapse
|
7
|
Mahdally NH, ElShiekh RA, Thissera B, Eltaher A, Osama A, Mokhtar M, Elhosseiny NM, Kashef MT, Magdeldin S, El Halawany AM, Rateb ME, Attia AS. Dihydrophenazine: a multifunctional new weapon that kills multidrug-resistant Acinetobacter baumannii and restores carbapenem and oxidative stress susceptibilities. J Appl Microbiol 2024; 135:lxae100. [PMID: 38627251 DOI: 10.1093/jambio/lxae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
AIMS The current work aims to fully characterize a new antimicrobial agent against Acinetobacter baumannii, which continues to represent a growing threat to healthcare settings worldwide. With minimal treatment options due to the extensive spread of resistance to almost all the available antimicrobials, the hunt for new antimicrobial agents is a high priority. METHODS AND RESULTS An Egyptian soil-derived bacterium strain NHM-077B proved to be a promising source for a new antimicrobial agent. Bio-guided fractionation of the culture supernatants of NHM-077B followed by chemical structure elucidation identified the active antimicrobial agent as 1-hydroxy phenazine. Chemical synthesis yielded more derivatives, including dihydrophenazine (DHP), which proved to be the most potent against A. baumannii, yet it exhibited a marginally safe cytotoxicity profile against human skin fibroblasts. Proteomics analysis of the cells treated with DHP revealed multiple proteins with altered expression that could be correlated to the observed phenotypes and potential mechanism of the antimicrobial action of DHP. DHP is a multipronged agent that affects membrane integrity, increases susceptibility to oxidative stress, interferes with amino acids/protein synthesis, and modulates virulence-related proteins. Interestingly, DHP in subinhibitory concentrations re-sensitizes the highly virulent carbapenem-resistant A. baumannii strain AB5075 to carbapenems providing great hope in regaining some of the benefits of this important class of antibiotics. CONCLUSIONS This work underscores the potential of DHP as a promising new agent with multifunctional roles as both a classical and nonconventional antimicrobial agent that is urgently needed.
Collapse
Affiliation(s)
- Norhan H Mahdally
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A ElShiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ashraf Eltaher
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Maha Mokhtar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo 57357, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ali M El Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- School of Pharmacy, Newgiza University, Giza 12585, Egypt
| |
Collapse
|
8
|
Sifontes-Rodríguez S, Mollineda-Diogo N, Monzote-Fidalgo L, Escalona-Montaño AR, Escario García-Trevijano JA, Aguirre-García MM, Meneses-Marcel A. In Vitro and In Vivo Antileishmanial Activity of Thioridazine. Acta Parasitol 2024; 69:324-331. [PMID: 38070122 PMCID: PMC11001698 DOI: 10.1007/s11686-023-00746-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/06/2023] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Leishmaniasis is a neglected disease with high prevalence and incidence in tropical and subtropical areas. Existing drugs are limited due to cost, toxicity, declining efficacy and unavailability in endemic places. Drug repurposing has established as an efficient way for the discovery of drugs for a variety of diseases. PURPOSE The objective of the present work was testing the antileishmanial activity of thioridazine, an antipsychotic agent with demonstrated effect against other intracellular pathogens. METHODS The cytotoxicity for mouse peritoneal macrophages as well as the activity against Leishmania amazonensis, Leishmania mexicana and Leishmania major promastigotes and intracellular amastigotes, as well as in a mouse model of cutaneous leishmaniasis, were assessed. RESULTS Thioridazine inhibited the in vitro proliferation of promastigotes (50% inhibitory concentration-IC50-values in the range of 0.73 µM to 3.8 µM against L. amazonensis, L. mexicana and L. major) and intracellular amastigotes (IC50 values of 1.27 µM to 4.4 µM for the same species). In contrast, in mouse peritoneal macrophages, the 50% cytotoxic concentration was 24.0 ± 1.89 µM. Thioridazine inhibited the growth of cutaneous lesions and reduced the number of parasites in the infected tissue of mice. The dose of thioridazine that inhibited lesion development by 50% compared to controls was 23.3 ± 3.1 mg/kg and in terms of parasite load, it was 11.1 ± 0.97 mg/kg. CONCLUSIONS Thioridazine was effective against the promastigote and intracellular amastigote stages of three Leishmania species and in a mouse model of cutaneous leishmaniasis, supporting the potential repurposing of this drug as an antileishmanial agent.
Collapse
Affiliation(s)
- Sergio Sifontes-Rodríguez
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Niurka Mollineda-Diogo
- Centro de Bioactivos Químicos, Universidad Central "Martha Abreu" de Las Villas, Santa Clara, Villa Clara, Cuba
| | | | - Alma Reyna Escalona-Montaño
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - María Magdalena Aguirre-García
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| | - Alfredo Meneses-Marcel
- Centro de Bioactivos Químicos, Universidad Central "Martha Abreu" de Las Villas, Santa Clara, Villa Clara, Cuba
| |
Collapse
|
9
|
Tapia-Rodriguez MR, Cantu-Soto EU, Vazquez-Armenta FJ, Bernal-Mercado AT, Ayala-Zavala JF. Inhibition of Acinetobacter baumannii Biofilm Formation by Terpenes from Oregano ( Lippia graveolens) Essential Oil. Antibiotics (Basel) 2023; 12:1539. [PMID: 37887240 PMCID: PMC10604308 DOI: 10.3390/antibiotics12101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen known for its ability to form biofilms, leading to persistent infections and antibiotic resistance. The limited effective antibiotics have encouraged the development of innovative strategies such as using essential oils and their constituents. This study evaluated the efficacy of oregano (Lippia graveolens) essential oil (OEO) and its terpene compounds, carvacrol and thymol, in inhibiting A. baumannii biofilms. These treatments showed a minimum inhibitory concentration of 0.6, 0.3, and 2.5 mg/mL and a minimum bactericidal concentration of 1.2, 0.6, and 5 mg/mL, respectively. Sub-inhibitory doses of each treatment and the OEO significantly reduced biofilm biomass and the covered area of A. baumannii biofilms as measured by fluorescence microscopy. Carvacrol at 0.15 mg/mL exhibited the most potent efficacy, achieving a remarkable 95% reduction. Sub-inhibitory concentrations of carvacrol significantly reduced the biofilm formation of A. baumannii in stainless steel surfaces by up to 1.15 log CFU/cm2 compared to untreated bacteria. The OEO and thymol exhibited reductions of 0.6 log CFU/cm2 and 0.4 log CFU/cm2, respectively, without affecting cell viability. Moreover, the terpenes inhibited twitching motility, a crucial step in biofilm establishment, with carvacrol exhibiting the highest inhibition, followed by OEO and thymol. The study provides valuable insights into the potential of terpenes as effective agents against A. baumannii biofilms, offering promising avenues for developing novel strategies to prevent persistent infections and overcome antibiotic resistance.
Collapse
Affiliation(s)
- Melvin Roberto Tapia-Rodriguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Ernesto Uriel Cantu-Soto
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Francisco Javier Vazquez-Armenta
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, México Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Ariadna Thalia Bernal-Mercado
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, México Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico;
| | - Jesus Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Mexico;
| |
Collapse
|