1
|
Liang J, Wang Y, Wang T, Chu C, Yi J, Liu Z. Enhancing fermented vegetable flavor with Lactobacillus plantarum and Rhodotorula mucilaginosa. Food Res Int 2025; 200:115500. [PMID: 39779143 DOI: 10.1016/j.foodres.2024.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
The formation of flavor in fermented vegetables is directly associated with the interactions among the resident microbial strains. This study explored the cooperative dynamics between Lactobacillus plantarum and Rhodotorula mucilaginosa in a simulated cabbage juice system. The obtained results indicated that the co-cultivation of these strains accelerated fermentation kinetics and enhanced lactic acid production. The strains achieved a balanced consumption of substrates within the co-fermentation system through the exchange of metabolites. Additionally, co-fermentation facilitated the synthesis of characteristic flavor compounds while reducing the levels of undesirable flavors. Growth monitoring and transcriptomic analysis revealed that L. plantarum, as the dominant strain, perceived the surrounding environment through quorum sensing signals and upregulated genes related to the synthesizing of key compounds, enhancing product yields and forming biofilms to adapt to the symbiotic environment. Conversely, R. mucilaginosa responded to the stress induced by L. plantarum via upregulating transporters of metabolites, genes related to antioxidant stress, and longevity regulating, ultimately achieving coexistence with L. plantarum. This research provides a comprehensive understanding of the interplay between microbial strains in modulating fermentation processes and flavor profiles in vegetable fermentation.
Collapse
Affiliation(s)
- Jiaqian Liang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| |
Collapse
|
2
|
Yu G, Huang TY, Li Y. Kanamycin promotes biofilm viability of MRSA strains showing extremely high resistance to kanamycin. Microb Pathog 2024; 196:106986. [PMID: 39353484 DOI: 10.1016/j.micpath.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is widely distributed in environment and can cause various human infection and food poisoning cases. Also, this pathogen is a typical biofilm former, which further complicates its pathogenicity. Antibiotics have been widely used to eliminate pathogenic bacteria, but their indiscriminate use has also led to the widespread emergence of drug-resistant bacteria, such as Methicillin-Resistant Staphylococcus aureus (MRSA). In this study, the effect of antibiotics on biofilm formation of MRSA strains 875 and 184 was explored. Firstly, MRSA 875 belongs to SCCmec type IV, ST239, carrying the atl, icaA, icaD, icaBC, and aap genes, and MRSA 184 belongs to SCCmec type II, ST5, carrying the atl, icaD, icaBC, aap, and agr genes. Then, a total of 8 antibiotics have been selected, including kanamycin, gentamycin, cipprofloxacin, erythromycin, meropenem, penicillin G, tetracycline, vancomycin. Minimum inhibitory concentrations (MICs) of each antibiotic were determined, and MIC of MRSA 875 and 184 to kanamycin/gentamicin are 2048/64 μg/mL and 2048/4 μg/mL, respectively. A total of 10 concentrations, ranging from 1/128 to 4 MIC with 2-fold, were used to study biofilm formation. Biofilm biomass and viability were determined during different phases, including initial adhesion (8 h), proliferation (16 h), accumulation (24 h) and maturation (48 h). Importantly, kanamycin at specific concentrations showed significant promotion of biofilm biomass and biofilm viability, with none of such observation acquired from other antibiotics. This study provides scientific basis and new research ideas for the quality control technology of microorganisms and safety prevention of MRSA.
Collapse
Affiliation(s)
- Guangchao Yu
- Center of Clinical Laboratory Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Yu Li
- Department of Pathology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
3
|
Zheng Y, Zhang Y, Zhao Y, Wu X, Wang H, Zhao H, Liu J, Liu B, Liu L, Song W. Heterologous expression of the Oenococcus oeni two-component signal transduction response regulator in the Lactiplantibacillus plantarum WCFS1 strain enhances acid stress tolerance. BMC Microbiol 2024; 24:370. [PMID: 39342090 PMCID: PMC11438414 DOI: 10.1186/s12866-024-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Oenococcus oeni is a commercial wine-fermenting bacterial strain, owing to its high efficiency of malolactic fermentation and stress tolerance. The present study explored the function of key genes in O. oeni to enhance stress resistance by heterologous expression of these genes in another species. RESULTS The orf00404 gene that encodes a two-component signal transduction response regulator in O. oeni was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The expression of orf00404 significantly enhanced the growth rate of the recombinant strain under acid stress. At 60 h, 72 h, and 108 h of culture at pH 4.0, the recombinant strain had 1562, 641, and 748 differentially expressed genes compared to the control strain, respectively. At all three time points, 20 genes were upregulated in the recombinant strain, including the lamA-D operon-coding genes of the quorum-sensing two component signal transduction system and the spx5 RNA polymerase-binding protein coding gene, which may help adaptation to acid stress. In addition, 47 genes were downregulated in the recombinant strain at all three time points, including the hsp1 heat shock protein-coding gene, the trxA1 thioredoxin-coding gene, and the dinP, mutY, umuC, and uvrB DNA damage repair-related protein-coding genes, potentially indicating that the recombinant strain was less susceptible to stress and had less DNA damage than the control strain in acid stress conditions. The recombinant strain had higher membrane fluidity, permeability, and integrity at an early stage of logarithmic growth (72 h), suggesting that it had a more complete and active cell membrane state at this stage. The intracellular ATP content was significantly reduced in the recombinant strain at the beginning of logarithmic growth (60 h), implying that the recombinant strain consumed more energy at this stage to resist acid stress and growth. CONCLUSIONS These results indicated that the recombinant strain enhances acid stress tolerance by regulating a gene expression pattern, increasing ATP consumption, and enhancing cell membrane fluidity, membrane permeability, and membrane integrity at specific growth stages. Thus, the recombinant strain may have potential application in the microbial biotechnology industry.
Collapse
Affiliation(s)
- Yujuan Zheng
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Yumiao Zhang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
- Shandong Qianfa Agricultural Technology Co., Ltd, Binzhou, 256600, China
| | - Yifan Zhao
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Xiaoqiu Wu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Huan Wang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Hongyu Zhao
- College of Enology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Junhua Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Bin Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Longxiang Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China.
- Shandong Qianfa Agricultural Technology Co., Ltd, Binzhou, 256600, China.
| | - Weiyu Song
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China.
| |
Collapse
|
4
|
Yang P, Xi B, Han Y, Li J, Luo L, Qu C, Li J, Liu S, Kang L, Bai B, Zhang B, Zhao S, Zhen P, Zhang L. Interactions of Saccharomyces cerevisiae and Lactiplantibacillus plantarum Isolated from Light-Flavor Jiupei at Various Fermentation Temperatures. Foods 2024; 13:2884. [PMID: 39335813 PMCID: PMC11431660 DOI: 10.3390/foods13182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Chinese Baijiu is a famous fermented alcoholic beverage in China. Interactions between key microorganisms, i.e., Saccharomyces cerevisiae and Lactiplantibacillus plantarum, have recently been reported at specific temperatures. However, empirical evidence of their interactions at various temperatures during fermentation is lacking. The results of this study demonstrated that S. cerevisiae significantly suppressed the viability and lactic acid yield of L. plantarum when they were cocultured above 15 °C. On the other hand, L. plantarum had no pronounced effect on the growth and ethanol yield of S. cerevisiae in coculture systems. S. cerevisiae was the main reducing sugar consumer. Inhibition of lactic acid production was also observed when elevated cell density of L. plantarum was introduced into the coculture system. A proteomic analysis indicated that the enzymes involved in glycolysis, lactate dehydrogenase, and proteins related to phosphoribosyl diphosphate, ribosome, and aminoacyl-tRNA biosynthesis in L. plantarum were less abundant in the coculture system. Collectively, our data demonstrated the antagonistic effect of S. cerevisiae on L. plantarum and provided insights for effective process management in light-flavor Baijiu fermentation.
Collapse
Affiliation(s)
- Pu Yang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Bo Xi
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ying Han
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Jiayang Li
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lujun Luo
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Chaofan Qu
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Junfang Li
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shuai Liu
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Le Kang
- Shanxi Province Science and Technology Resources and Large-Scale Instrument Open Sharing Center, Taiyuan 030000, China
| | - Baoqing Bai
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ben Zhang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shaojie Zhao
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Pan Zhen
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Lizhen Zhang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Kang J, Huang X, Li R, Zhang Y, Chen XX, Han BZ. Deciphering the core microbes and their interactions in spontaneous Baijiu fermentation: A comprehensive review. Food Res Int 2024; 188:114497. [PMID: 38823877 DOI: 10.1016/j.foodres.2024.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The spontaneous Baijiu fermentation system harbors a complex microbiome that is highly dynamic in time and space and varies depending on the Jiuqu starters and environmental factors. The intricate microbiota presents in the fermentation environment is responsible for carrying out various reactions. These reactions necessitate the interaction among the core microbes to influence the community function, ultimately shaping the distinct Baijiu styles through the process of spontaneous fermentation. Numerous studies have been conducted to enhance our understanding of the diversity, succession, and function of microbial communities with the aim of improving fermentation manipulation. However, a comprehensive and critical assessment of the core microbes and their interaction remains one of the significant challenges in the Baijiu fermentation industry. This paper focuses on the fermentation properties of core microbes. We discuss the state of the art of microbial traceability, highlighting the crucial role of environmental and starter microbiota in the Baijiu brewing microbiome. Also, we discuss the various interactions between microbes in the Baijiu production system and propose a potential conceptual framework that involves constructing predictive network models to simplify and quantify microbial interactions using co-culture models. This approach offers effective strategies for understanding the core microbes and their interactions, thus beneficial for the management of microbiota and the regulation of interactions in Baijiu fermentation processes.
Collapse
Affiliation(s)
- Jiamu Kang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xiaoning Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rengshu Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuandi Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiao-Xue Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Li Q, Lin W, Zhang X, Wang M, Zheng Y, Wang X, Gao G, Li Y, Zhao D, Zhang C. Transcriptomics integrated with metabolomics reveal the competitive relationship between co-cultured Trichoderma asperellum HG1 and Bacillus subtilis Tpb55. Microbiol Res 2024; 280:127598. [PMID: 38176360 DOI: 10.1016/j.micres.2023.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Microbial co-culture has proven to be an effective way to improve the ability of microorganisms to biocontrol. However, the interactive mechanisms of co-cultural microbes, especially between fungi and bacteria, have rarely been studied. By comparative analysis of morphology, transcriptomics and metabolomics, the interactive mechanisms of a sequential co-culture system of Trichoderma asperellum HG1 and Bacillus subtilis Tpb55 was explored in this study. The results revealed that co- culture has no significant effect on the growth and cell morphology of the two strains, but lead to mycelium wrinkling of HG1. RNA-seq analysis showed that co-culture significantly upregulated the HG1 genes concerning amino acid degradation and metabolism, proteolysis, resisting environmental stress, cell homeostasis, glycolysis, the glyoxylate cycle, and the citric acid (TCA) cycle, while Tpb55 genes related to cell homeostasis, spore formation and membrane fluidization were significantly upregulated, but genes associating to TCA, glycolytic cycles and fatty acid β-oxidation were significantly downregulated. Metabolomic results revealed that some amino acids related to energy metabolism were significantly altered in HG1, whereas palmitic acid, which is related to cell membrane functions, was upregulated in Tpb55. These results indicated that HG1 could interfere with carbon metabolism and cell membrane fluidity, but accelerate spore formation of Tpb55. Biophysical assays further convinced that co-culture could decrease ATP content and inhibit ATPase activity in HG1, and could promote spore formation and reduce the cell membrane fluidity of Tpb55. In addition, co-culture also accelerated the production of intracellular anti-oomycete compound octhilinone. The above results indicate that HG1 and Tpb55 are mainly in a competitive relationship in the co culture system. These findings provide new insights for understanding the interaction mechanism between co cultured microbes.
Collapse
Affiliation(s)
- Qingyu Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Wei Lin
- Nanping Branch of Fujian Tobacco Company, Nanping 353000, China
| | - Xifen Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Mei Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xianbo Wang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi 563000, China
| | - Gui Gao
- Southwest Guizhou Prefecture Branch of Guizhou Tobacco Company, Xingyi 562400, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
7
|
Wang Y, Zhang X, Wu Y, Sun G, Jiang Z, Hao S, Ye S, Zhang H, Zhang F, Zhang X. Improving biomass yields of microalgae biofilm by coculturing two microalgae species via forming biofilms with uniform microstructures and small cell-clusters. BIORESOURCE TECHNOLOGY 2024; 393:130052. [PMID: 37995875 DOI: 10.1016/j.biortech.2023.130052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Microalgae coculture has the potential to promote microalgae biofilm growth. Herein, three two-species cocultured biofilms were studied by determining biomass yields and detailed microstructure parameters, including porosity, average pore length, average cluster length, etc. It was found that biomass yields could reduce by 21-53 % when biofilm porosities decreased from about 35 % to 20 %; while at similar porosities (∼20 %), biomass yields of cocultured biofilms increased by 37 % when they possessed uniform microstructure and small cell-clusters (pores and clusters of 1 ∼ 10 μm accounted for 96 % and 68 %, respectively). By analyzing morphologies and surface properties of cells, it was found that cells with small size, spherical shape, and reduced surface polymers could hinder the cell-clusters formation, thereby promoting biomass yields. The study provides new insights into choosing cocultured microalgae species for improving the biomass yield of biofilm via manipulating biofilm microstructures.
Collapse
Affiliation(s)
- Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing 100083, China.
| | - Yuyang Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guangpu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| | - Siyuan Hao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiya Ye
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hu Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing 100083, China
| |
Collapse
|
8
|
Zou Y, Li X, Mao Y, Song W, Liu Q. Enhanced Biofilm Formation by Tetracycline in a Staphylococcus aureus Naturally Lacking ica Operon and atl. Microb Drug Resist 2024; 30:82-90. [PMID: 38252794 DOI: 10.1089/mdr.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.
Collapse
Affiliation(s)
- Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Song
- Department of Economics, School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Wenkang H, Jingui L, Wei Z, Jiangli W, Zhengbin Y, Furong Z, Xuefeng Z. Multi-omics analysis reveals the microbial interactions of S. cerevisiae and L. plantarum on Suanyu, Chinese traditional fermented fish. Food Res Int 2023; 174:113525. [PMID: 37986426 DOI: 10.1016/j.foodres.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
S. cerevisiae and L. plantarum play important roles in Suanyu fermentation. This study investigated the interaction between S. cerevisiae and L. plantarum during fermentation and its impact on metabolic pathways. Co-culturing S. cerevisiae and L. plantarum increased pH to 5.72, reduced TVB-N to 9.47 mg/mL, and achieved high utilization rates of sugars (98.9%) and proteins (73.7%). During microbial interactions, S. cerevisiae and L. plantarum produced antibiotics, including phenyllactate and Gentamicin C1a, inhibiting the growth of each other. S. cerevisiae used S-adenosyl-l-methionine to counteract acid production of L. plantarum, establishing dominance in Suanyu fermentation. Microbial interactions influenced carbohydrate and energy metabolism pathways, such as nicotinate and nicotinamide metabolism and purine metabolism. S. cerevisiae significantly impacted gene expression in protein synthesis and cell growth pathways, including ribosome, SNARE interactions, basal transcription factors, and MAPK signaling. These findings offer insights into microbial interactions and metabolic processes during Suanyu fermentation.
Collapse
Affiliation(s)
- Hu Wenkang
- College of Life Sciences, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Liu Jingui
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Zhang Wei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wu Jiangli
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Yang Zhengbin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Zhang Furong
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Zeng Xuefeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China.
| |
Collapse
|
10
|
Liang J, Huang TY, Li X, Gao Y. Germicidal effect of intense pulsed light on Pseudomonas aeruginosa in food processing. Front Microbiol 2023; 14:1247364. [PMID: 37692381 PMCID: PMC10484712 DOI: 10.3389/fmicb.2023.1247364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background Pseudomonas aeruginosa (P. aeruginosa) can cause serious infections in many parts of the body and is also an underestimated foodborne pathogen. Intense pulsed light sterilization is recognized for its high sterilization efficiency, flexible and safe operation and ease of installation on production lines, which makes up for the shortcomings of several other physical sterilization technologies. Methods This experiment studied the killing efficiency of different capacitances (650 μF, 470 μF, and 220 μF) of intense pulsed light on foodborne pathogenic microorganisms P. aeruginosa in the models of liquid food models, 96-well cell plates, and polycarbonate membrane models at room temperature (25°C) and refrigerated (4°C) environments to provide data to support the application of IPL sterilization devices in food processing. Results The IPL was very effective in killing P. aeruginosa in the planktonic state as well as in the early and mature biofilm states, meeting target kill rates of 100%, 99.99%, and 94.33% for a given number of exposures. The biofilms formed in the polycarbonate membrane model and the 96-well plate model were more resistant to killing compared to the planktonic state. To achieve the same bactericidal effect, the number of flashes increased with decreasing capacitance. Conclusion The bactericidal effect of IPL on P. aeruginosa was significantly influenced by the state of the bacterium. The larger the capacitance the higher the number of pulses and the better the sterilization effect on P. aeruginosa.
Collapse
Affiliation(s)
- Jinglong Liang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Yan Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
Li X, Gu N, Ye Y, Lan H, Peng F, Peng G. Intense pulsed light for inactivating planktonic and biofilm molds in food. Front Microbiol 2023; 13:1104875. [PMID: 36687621 PMCID: PMC9846768 DOI: 10.3389/fmicb.2022.1104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
It has been reported that about a quarter of the world's agriculture products is unable to be consumed each year because of mold contamination, resulting in incalculable economic losses. Despite modern food technology and the various preservation techniques available, the problem of mold contamination of food is still not adequately controlled. In this study, we simulated the biofilm formed by Aspergillus niger and Penicillium glaucum in liquid and solid food in 96 well cell culture plates and polycarbonate membrane models, respectively, and investigated the fungicidal effect of IPL on planktonic and biofilm molds at three different capacitance parameters at room and refrigerator temperatures. The results show that IPL can achieve fungicidal rates of over 99% for planktonic molds and over 90% for biofilm molds, and that the smaller the capacitance, the more frequent the irradiation required to achieve the same fungicidal rate. In addition, temperature, A. niger or Penicillium glaucum have no effect on the fungicidal effect of IPL. We believe that IPL is a promising non-thermal physical sterilization technique for fungal inhibition on food surfaces.
Collapse
Affiliation(s)
- Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China,Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Nixuan Gu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China,Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China,*Correspondence: Yanrui Ye, ✉
| | - Haifeng Lan
- Department of Orthopeadic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China,Gongyong Peng, ✉
| |
Collapse
|
12
|
Liang J, Huang TY, Mao Y, Li X. Biofilm formation of two genetically diverse Staphylococcus aureus isolates under beta-lactam antibiotics. Front Microbiol 2023; 14:1139753. [PMID: 36950159 PMCID: PMC10025342 DOI: 10.3389/fmicb.2023.1139753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
PURPOSE Our aim was to evaluate the biofilm formation of 2 genetically diverse Staphylococcus aureus isolates, 10379 and 121940, under different concentrations of beta-lactam antibiotics on biomass content and biofilm viability. METHODS Biofilm formation and methicillin resistance genes were tested using PCR and multiplex PCR. PCR was combined with bioinformatics analysis to detect multilocal sequence typing (MLST) and SCCmec types, to study the genetical correlation between the tested strains. Then, the crystal violet (CV) test and XTT were used to detect biomass content and biofilm activity. Antibiotic susceptibility was tested using a broth dilution method. According to their specific MIC, different concentrations of beta-lactam antibiotics were used to study its effect on biomass content and biofilm viability. RESULTS Strain 10379 carried the icaD, icaBC, and MRSA genes, not the icaA, atl, app, and agr genes, and MLST and SCCmec typing was ST45 and IV, respectively. Strain 121940 carried the icaA, icaD, icaBC, atl, and agr genes, not the aap gene, and MLST and SCCmec typed as ST546 and IV, respectively. This suggested that strains 10379 and 121940 were genotypically very different. Two S. aureus isolates, 10379 and 121940, showed resistance to beta-lactam antibiotics, penicillin, ampicillin, meropenem, streptomycin and kanamycin, some of which promoted the formation of biofilm and biofilm viability at low concentrations. CONCLUSION Despite the large differences in the genetic background of S. aureus 10379 and 121940, some sub-inhibitory concentrations of beta-lactam antibiotics are able to promote biomass and biofilm viability of both two isolates.
Collapse
Affiliation(s)
- Jinglong Liang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Teng Yi Huang,
| | - Yuzhu Mao
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
| | - Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- *Correspondence: Xuejie Li,
| |
Collapse
|
13
|
Li X, Gu N, Huang TY, Zhong F, Peng G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol 2022; 13:1114199. [PMID: 36762094 PMCID: PMC9905436 DOI: 10.3389/fmicb.2022.1114199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a notorious gram-negative pathogenic microorganism, because of several virulence factors, biofilm forming capability, as well as antimicrobial resistance. In addition, the appearance of antibiotic-resistant strains resulting from the misuse and overuse of antibiotics increases morbidity and mortality in immunocompromised patients. However, it has been underestimated as a foodborne pathogen in various food groups for instance water, milk, meat, fruits, and vegetables. Chemical preservatives that are commonly used to suppress the growth of food source microorganisms can cause problems with food safety. For these reasons, finding effective, healthy safer, and natural alternative antimicrobial agents used in food processing is extremely important. In this review, our ultimate goal is to cover recent advances in food safety related to P. aeruginosa including antimicrobial resistance, major virulence factors, and prevention measures. It is worth noting that food spoilage caused by P. aeruginosa should arouse wide concerns of consumers and food supervision department.
Collapse
Affiliation(s)
- Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Nixuan Gu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feifeng Zhong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Gongyong Peng, ✉
| |
Collapse
|