1
|
Zhao W, Wan S, Li S, Li W, Kang J, Liu Y, Huang H, Li H, Du XD, Xu C, Yao H. Research note: characteristics of bla NDM and mcr-1 co-producing Escherichia coli from retail chicken meat. Poult Sci 2024; 103:104160. [PMID: 39178818 PMCID: PMC11385413 DOI: 10.1016/j.psj.2024.104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024] Open
Abstract
Carbapenems and colistin are vital antimicrobials used to treat Enterobacteriaceae-caused infections. The present study aimed to characterize the coexistence mechanism of carbapenem and colistin resistance in an Escherichia coli isolated from retail chicken meat. A total of 4 E. coli isolates co-harboring carbapenem resistance gene blaNDM (2 E. coli isolates with blaNDM-5 and 2 with blaNDM-9) and colistin resistance gene mcr-1. Antimicrobial susceptibility testing exhibited that all the 4 E. coli strains had multidrug resistance profile and consistent with the resistance genes they carried. MLST showed that 3 E. coli isolates belonged to a pathogenic E. coli lineage ST354, which is closely associated with human infections and pose a serious threat to public health. Whole genome sequencing (WGS) showed that 4 mcr-1-positive plasmids with sizes of 60.4 kb to 67.4 kb all belonged to the IncI2 type. A total of 5 blaNDM-harboring plasmids ranged from 99.0 kb to 138.3 kb, among which 4 plasmids belonged to unknow type and only pCS5L-NDM belonged to IncFIA/IncFIB group of hybrid plasmids, a novel carrier for blaNDM. Comparative analysis exhibited that the mcr-1 or blaNDM-carrying plasmids of E. coli strains from chicken meat showed high identity with that from Enterobacteriaceae of human origin, which indicated the risk of mcr-1 or blaNDM dissemination from retail meat to human. The simultaneous occurrence of mcr-1 and blaNDM in E. coli emphasizes the significant of antimicrobial resistance surveillance in retail meat.
Collapse
Affiliation(s)
- Wenbo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Shuigen Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Shihong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Wenjun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Jin Kang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Yong Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Hexiang Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Hao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Chunyan Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Chen R, Li C, Ge H, Qiao J, Fang L, Liu C, Gou J, Guo X. Difference analysis and characteristics of incompatibility group plasmid replicons in gram-negative bacteria with different antimicrobial phenotypes in Henan, China. BMC Microbiol 2024; 24:64. [PMID: 38373913 PMCID: PMC10875880 DOI: 10.1186/s12866-024-03212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Multi-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment. METHODS 330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes. RESULTS 21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking blaKPC-2 and blaNDM. CONCLUSIONS MDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.
Collapse
Affiliation(s)
- Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Fang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cailin Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Zuo H, Sugawara Y, Kayama S, Kawakami S, Yahara K, Sugai M. Genetic and phenotypic characterizations of IncX3 plasmids harboring bla NDM-5 and bla NDM-16b in Japan. Microbiol Spectr 2023; 11:e0216723. [PMID: 37855603 PMCID: PMC10715108 DOI: 10.1128/spectrum.02167-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE IncX3 plasmids harboring bla NDM-5 play a major role in the spread of carbapenem resistance in Asia, particularly in China, in clinical and environmental settings. In this study, we present that Enterobacterales isolates carrying IncX3 plasmids harboring bla NDM-5 have been disseminated in Japan, where their identification was previously rare. In addition, bla NDM-16b, a single-nucleotide variant of bla NDM-5, was found to be carried by an identical IncX3 plasmid. A comparative sequence analysis revealed that the bla NDM-16b gene emerged from a single nucleotide substitution on an IncX3 plasmid harboring bla NDM-5. The bla NDM-16b gene did not confer elevated carbapenem resistance compared to bla NDM-5 in our assay using transformants carrying the plasmid harboring either of these genes, although the A233V substitution was reported to confer stability to the enzyme in ion-depleted conditions. Nevertheless, vigilance regarding the emergence of novel variants is required.
Collapse
Affiliation(s)
- Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
4
|
Pan F, Chen P, Duan Y, Yu F, Weng W, Zhang H. Prevalence of intestinal colonization and nosocomial infection with carbapenem-resistant Enterobacteriales in children: a retrospective study. Front Public Health 2023; 11:1251609. [PMID: 38074706 PMCID: PMC10702246 DOI: 10.3389/fpubh.2023.1251609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Objective We investigated the epidemiological surveillance of the intestinal colonization and nosocomial infection of carbapenem-resistant Enterobacteriales (CRE) isolates from inpatients, which can provide the basis for developing effective prevention. Methods A total of 96 CRE strains were collected from 1,487 fecal samples of hospitalized children between January 2016 and June 2017, which were defined as the "CRE colonization" group. In total, 70 CRE clinical isolates were also randomly selected for the comparison analysis and defined as the "CRE infection" group. The antimicrobial susceptibility of all strains was determined by the microdilution broth method. Polymerase chain reaction (PCR) was used to analyze carbapenemase genes, plasmid typing, and integrons. Multilocus sequence typing was further used to determine clonal relatedness. Results In the "CRE colonization" group, Klebsiella pneumoniae was mostly detected with a rate of 42.7% (41/96), followed by Escherichia coli (34.4%, 33/96) and Enterobacter cloacae (15.6%, 15/96). The ST11 KPC-2 producer, ST8 NDM-5 producer, and ST45 NDM-1 producer were commonly present in carbapenem-resistant K. pneumoniae (CRKPN), carbapenem-resistant E. coli (CRECO), and carbapenem-resistant E. cloacae (CRECL) isolates, respectively. In the "CRE infection" group, 70% (49/70) of strains were K. pneumoniae, with 21.4% E. cloacae (15/70) and 5.7% E. coli (4/70). The ST15 OXA-232 producer and ST48 NDM-5 producer were frequently observed in CRKPN isolates, while the majority of NDM-1-producing CRECL isolates were assigned as ST45. Phylogenetic analysis showed that partial CRE isolates from intestinal colonization and nosocomial infection were closely related, especially for ST11 KPC-2-producing CRKPN and ST45 NDM-1-producing CRECL. Furthermore, plasmid typing demonstrated that IncF and IncFIB were the most prevalent plasmids in KPC-2 producers, while IncX3/IncX2 and ColE were widely spread in NDM producer and OXA-232 producer, respectively. Then, class 1 integron intergrase intI1 was positive in 74.0% (71/96) of the "CRE colonization" group and 52.9% (37/70) of the "CRE infection" group. Conclusion This study revealed that CRE strains from intestinal colonization and nosocomial infection showed a partial correlation in the prevalence of CRE, especially for ST11 KPC-2-producing CRKPN and ST45 NDM-1-producing CRECL. Therefore, before admission, long-term active screening of rectal colonization of CRE isolates should be emphasized.
Collapse
Affiliation(s)
- Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yuxin Duan
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Kubota H, Nakayama T, Ariyoshi T, Uehara S, Uchitani Y, Tsuchida S, Nishiyama H, Morioka I, Koshinaga T, Kusabuka A, Nakatsubo N, Yamagishi T, Tabuchi Y, Okuno R, Kobayashi K, Mitobe M, Yokoyama K, Shinkai T, Suzuki J, Sadamasu K. Emergence of Phytobacter diazotrophicus carrying an IncA/C 2 plasmid harboring bla NDM-1 in Tokyo, Japan. mSphere 2023; 8:e0014723. [PMID: 37449846 PMCID: PMC10449528 DOI: 10.1128/msphere.00147-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Phytobacter diazotrophicus is an Enterobacterales species that was originally identified as a plant growth-promoting, Gram-negative bacterium. Recently, this species has been recognized as relevant to opportunistic human and nosocomial infections in clinical settings. Its frequent misidentification as other Enterobacterales species from clinical examination occasionally causes a delay in the identification of nosocomial outbreaks. Here, we report the emergence of New Delhi metallo-β-lactamase (NDM)-producing P. diazotrophicus isolated from hospitalized pediatric patients and hospital environments in Tokyo, Japan. In our case, these isolates were found during an investigation of carbapenem-resistant Enterobacterales in relation to nosocomial infections. Whole-genome sequencing is useful for overcoming the difficulty of species identification. Furthermore, we found that bla NDM-1 was carried by an IncA/C2 plasmid (approximately 170 kbp), which was transferrable from the clinical isolates to the recipient strain Escherichia coli J53. Our study demonstrated that P. diazotrophicus behaves as a carrier of bla NDM-harboring plasmids, potentially disseminating resistance to carbapenems among Enterobacterales. IMPORTANCE Early detection of nosocomial outbreaks is important to minimize the spread of bacteria. When an outbreak is caused by multidrug-resistant bacteria such as carbapenem-resistant Enterobacterales, a delay in findings makes it difficult to control it because such bacteria often spread not only among human patients but also in hospital environments. Phytobacter diazotrophicus, an Enterobacterales species that has recently been found to be relevant to clinical settings, is often misidentified as other bacteria in clinical laboratories. Here, we found NDM-producing P. diazotrophicus in hospitalized pediatric patients and their environment in Tokyo, Japan. Given that the isolates carried bla NDM-1-harboring transferrable plasmids, the influence of such bacteria could be greater with the mediation of horizontal transfer of carbapenem resistance. Our findings suggest that P. diazotrophicus should be recognized as an NDM-carrier, for which more attention should be paid in clinical settings.
Collapse
Affiliation(s)
- Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Nakayama
- Division of Laboratory Medicine and Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Satomi Uehara
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Sachio Tsuchida
- Division of Laboratory Medicine and Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Hiroyuki Nishiyama
- Clinical Laboratory Department, Surugadai Nihon University Hospital, Chiyoda-ku, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Oyaguchi, Itabashi-ku, Tokyo, Japan
| | - Tsugumichi Koshinaga
- Department of Pediatric Surgery, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Akiko Kusabuka
- Department of Planning and Coordination, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Naoki Nakatsubo
- Department of Planning and Coordination, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Takuya Yamagishi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yuri Tabuchi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Keiko Yokoyama
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Takayuki Shinkai
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|