1
|
Ke W, Ao C, Wei R, Zhu X, Shui J, Zhao J, Zhang X, Wang L, Huang L, Leng X, Zhu R, Wu J, Huang L, Huang N, Wang H, Weng W, Yang L, Tang S. Evaluating the clinical utility of semi-quantitative luciferase immunosorbent assay using Treponema pallidum antigens in syphilis diagnosis and treatment monitoring. Emerg Microbes Infect 2024; 13:2348525. [PMID: 38661428 PMCID: PMC11100446 DOI: 10.1080/22221751.2024.2348525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
To assess the clinical applicability of a semi-quantitative luciferase immunosorbent assay (LISA) for detecting antibodies against Treponema pallidum antigens TP0171 (TP15), TP0435 (TP17), and TP0574 (TP47) in diagnosing and monitoring syphilis. LISA for detection of anti-TP15, TP17, and TP47 antibodies were developed and evaluated for syphilis diagnosis using 261 serum samples (161 syphilis, 100 non-syphilis). Ninety serial serum samples from 6 syphilis rabbit models (3 treated, 3 untreated) and 110 paired serum samples from 55 syphilis patients were used to assess treatment effects by utilizing TRUST as a reference. Compared to TPPA, LISA-TP15, LISA-TP17, and LISA-TP47 showed a sensitivity of 91.9%, 96.9%, and 98.8%, specificity of 99%, 99%, and 98%, and AUC of 0.971, 0.992, and 0.995, respectively, in diagnosing syphilis. Strong correlations (rs = 0.89-0.93) with TPPA were observed. In serial serum samples from rabbit models, significant differences in the relative light unit (RLU) were observed between the treatment and control group for LISA-TP17 (days 31-51) and LISA-TP47 (day 41). In paired serum samples from syphilis patients, TRUST titres and the RLU of LISA-TP15, LISA-TP17, and LISA-TP47 decreased post-treatment (P < .001). When TRUST titres decreased by 0, 2, 4, or ≥8-folds, the RLU decreased by 17.53%, 31.34%, 48.62%, and 72.79% for LISA-TP15; 8.84%, 17.00%, 28.37%, and 50.57% for LISA-TP17; 22.25%, 29.79%, 51.75%, and 70.28% for LISA-TP47, respectively. Semi-quantitative LISA performs well for syphilis diagnosis while LISA-TP17 is more effective for monitoring syphilis treatment in rabbit models and clinical patients.
Collapse
Affiliation(s)
- Wujian Ke
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Cailing Ao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangzhou Baiyun District Center for Disease Control and Prevention, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ran Wei
- Department of Dermatology, Tianjin Children Hospital, Tianjin, People’s Republic of China
| | - Xiaozhen Zhu
- Center of Clinical Laboratory, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, Fujian Province, People’s Republic of China
- Institute of Infectious Disease, Medical College of Xiamen University, Xiamen, Fujian Province, People’s Republic of China
| | - Jingwei Shui
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jianhui Zhao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaohui Zhang
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Liuyuan Wang
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Liping Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xinying Leng
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Rui Zhu
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiaxin Wu
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lixia Huang
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Nanxuan Huang
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Haiying Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ligang Yang
- Department of Sexually Transmitted Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
2
|
Martins DOS, Ruiz UEA, Santos IA, Oliveira IS, Guevara-Vega M, de Paiva REF, Abbehausen C, Sabino-Silva R, Corbi PP, Jardim ACG. Exploring the antiviral activities of the FDA-approved drug sulfadoxine and its derivatives against Chikungunya virus. Pharmacol Rep 2024; 76:1147-1159. [PMID: 39150661 DOI: 10.1007/s43440-024-00635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.
Collapse
Affiliation(s)
- Daniel Oliveira Silva Martins
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
- Institute of Bioscience, Language and Exact Sciences - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil
| | - Uriel Enrique Aquino Ruiz
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | | | - Marco Guevara-Vega
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | | | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science - ICBIM, Federal University of Uberlândia - UFU, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, CEP: 38405-302, Brazil.
- Institute of Bioscience, Language and Exact Sciences - IBILCE, São Paulo State University - UNESP, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
3
|
Li X, Fang Y, Huang X, Zhao Y, Wan C. A Luciferase Immunosorbent Assay Based on Attachment Glycoprotein for the Rapid and Easy Detection of Nipah Virus IgG Antibodies. Microorganisms 2024; 12:983. [PMID: 38792812 PMCID: PMC11124132 DOI: 10.3390/microorganisms12050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Nipah virus (NiV) is a virulent zoonotic disease whose natural host is the fruit bat (Pteropus medius), which can coexist with and transmit the virus. Due to its high pathogenicity, wide host range, and pandemic potential, establishing a sensitive, specific, and rapid diagnostic method for NiV is key to preventing and controlling its spread and any outbreaks. Here, we established a luciferase immunosorbent assay (LISA) based on the NiV attachment glycoprotein (G) to detect NiV-specific immunoglobulin G by expressing a fusion protein of nanoluciferase (NanoLuc) and the target antigen. Sensitivity analysis was performed and compared to an indirect enzyme-linked immunosorbent assay (ELISA), and specificity and cross-reactivity assessments were performed using NiV-positive horse serum and Ebola virus-, Crimean-Congo hemorrhagic fever virus-, and West Nile virus-positive horse sera. The optimal structural domain for NiV detection was located within amino acids 176-602 of the NiV G protein head domain. Moreover, the LISA showed at least fourfold more sensitivity than the indirect ELISA, and the cross-reactivity results suggested that the LISA had good specificity and was capable of detecting NiV-specific immunoglobulin G in both mouse and horse serum. In conclusion, the establishment of a rapid, simple NiV LISA using the G protein head domain provides a resource for NiV monitoring.
Collapse
Affiliation(s)
- Xinyue Li
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.L.); (Y.F.); (X.H.)
| | - Yuting Fang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.L.); (Y.F.); (X.H.)
| | - Xinyi Huang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.L.); (Y.F.); (X.H.)
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chengsong Wan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.L.); (Y.F.); (X.H.)
| |
Collapse
|
4
|
Wang Q, Tian Z, Yang J, Gao S, Du J, Zhang H, Zhang Z, Guan G, Niu Q, Yin H. An improved luciferase immunosorbent assay for ultrasensitive detection of antibodies against African swine fever virus. Front Microbiol 2022; 13:1013678. [PMID: 36246209 PMCID: PMC9557169 DOI: 10.3389/fmicb.2022.1013678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a fatal infectious disease of pigs and causes great socioeconomic losses globally. The reliable diagnostic method is critical for prevention and control of the disease. In this study, an improved Luciferase immunosorbent assay (LISA) for detecting ASF was developed using the cell lysates containing ASFV p35 protein fused with a reporter Nano-luciferase (p35-Luc protein). The improved method avoids the complicate procedures of immobilizing the serum samples with protein G in the normal LISA method, and replaced by directly coating the serum samples with carbonate buffer, therefore reduces the productive cost and simplifies the operation procedures. The p35-Luc LISA exhibited high specificity for anti-ASFV sera while no cross-reactions with the sera against other swine viruses. The detection limit of the p35-Luc LISA was shown to be at least four times higher than that of the p35 based indirect ELISA established in our lab. The receiver operating characteristic (ROC) analysis showed the 96.36% relative specificity and 96.97% relative sensitivity of the p35-Luc LISA with the cutoff values of 3.55 as compared to the commercial Ingezim p72-ELISA kit. Furthermore, a total of 248 serum samples were tested by both the p35-Luc LISA and commercial Ingezim p72-ELISA kit, and there was a high degree of agreement (97.6%, kappa = 0.9753) in the performance of the two assays. Collectively, the improved LISA based on the p35-Luc protein could be used as a rapid, ultrasensitive, cost-effective and reliable diagnostic tool for serological survey of ASF in pig farms.
Collapse
Affiliation(s)
- Qiongjie Wang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhancheng Tian
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Zhancheng Tian,
| | - Jifei Yang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shandian Gao
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junzheng Du
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongge Zhang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhonghui Zhang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingli Niu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, State Key Laboratory of Veterinary Etiological Biology Project, Yangzhou, China
| |
Collapse
|