1
|
Qala Nou MS, Amirian Z, Dehghani F, Vejdan AK, Rooin R, Dehghanmehr S. Systematic review and meta-analysis on the carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates. BMC Pharmacol Toxicol 2025; 26:25. [PMID: 39885589 PMCID: PMC11783860 DOI: 10.1186/s40360-025-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The global dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) poses a critical threat to public health. However, comprehensive data on the prevalence and resistance rates of CR-hvKp are limited. This systematic review and meta-analysis aim to estimate the pooled prevalence of carbapenem resistance among hvKp strains and assess the distribution of carbapenemase genes. MATERIALS AND METHODS A systematic search of ISI Web of Science, PubMed, and Google Scholar was conducted to identify studies reporting carbapenem resistance rates in hvKp strains. The pooled prevalence of carbapenem resistance and carbapenemase genes was calculated using event rates with 95% confidence intervals. RESULTS A total of 36 studies encompassing 1,098 hvKp strains were included. The pooled resistance rates were 49% for imipenem, 53.2% for meropenem, and 38.2% for ertapenem. Carbapenemase gene prevalence was 19.1% for blaVIM, 22.0% for blaNDM, 43.4% for blaOXA-48, and 58.8% for blaKPC. CONCLUSION The high prevalence of carbapenem resistance and the widespread distribution of carbapenemase genes among hvKp strains underscore their significant threat to global health. These findings highlight the urgent need for enhanced surveillance, rapid diagnostic tools, and stringent infection control measures to mitigate the spread of CR-hvKp. Future research should focus on understanding resistance mechanisms and developing targeted therapeutic strategies to address this critical challenge.
Collapse
Affiliation(s)
| | - Zahra Amirian
- Department of Surgery, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Dehghani
- Department of Pediatrics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amir-Kazem Vejdan
- Department of General Surgery, Imam Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Rooin
- Critical Care Nursing, Department of Nursing, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sadegh Dehghanmehr
- Medical Surgical Nursing, Department of Nursing, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
2
|
Liu J, Yuan S, Xuan L, Sun Y, Zhang X, Qiao L, Du X. Emergence of a novel sequence type carbapenem-resistant hypervirulent Klebsiella pneumoniae ST6417 harboring blaNDM-5 on the lncX3 plasmid. Microbiol Spectr 2024; 12:e0098424. [PMID: 39162259 PMCID: PMC11448260 DOI: 10.1128/spectrum.00984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is a significant pathogen causing major public health problems worldwide. This study characterized a novel sequence type 6417 (ST6471) CR-hvKP strain recovered from the blood of a male patient with septicemia. Strain CR2021 is not susceptible to carbapenems, cephalosporin, sulfonamides, quinolones, or levofloxacin and is susceptible to amikacin and tigecycline. Molecular typing indicated that ST6417 is derived from the most dominant hypervirulent K. pneumoniae (hvKP) clone in China, ST23, with a single-locus variation in tonB. The genomic characterization of CR2021, which contains three plasmids, was performed through whole-genome sequencing. The plasmid pCR2021_IncFII contains 12 antibiotic resistance genes [blaCTX-M-3, blaTEM-1B, blaDHA-1, aac (3)-Ild, aadA16, sul1, sul2, qnrB4, ARR-3, dfrA27, qacE, merACDE], all of which are associated with genetic elements. The plasmid pCR2021_IncFIB carries crucial virulence-related genes, while the plasmid pCR2021_IncX3 only harbors the blaNDM-5 resistance gene and exhibits 99% similarity with two other blaNDM-5-carrying IncX3 plasmids (pSHX180-NDM5, pNDM-K725), with coverage of 87% and 100%, respectively. The blaNDM-5 genetic region contains an additional IS26-Tn3 genetic module. Serum killing and anti-human neutrophil phagocytosis tests indicated that CR2021 exhibits high virulence, which was further confirmed in a Galleria mellonella larvae infection model. CR-hvKP is becoming more prevalent in China; however, the majority have evolved from the multidrug resistance clone ST11 and its variants by acquiring virulence factors. Conversely, CR-hvKP derived from hvKP, such as the clone ST23, remains relatively rare. Therefore, the discovery of ST6417 underscores the need for further research into the genetic characteristics and evolution of bacteria. IMPORTANCE ST11 and its variants, which often exhibit drug resistance, represent popular clones of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) in China, often leading to high morbidity and mortality rates owing to their high virulence and robust drug resistance. Conversely, CR-hvKP, originating from the high-virulence sequence type ST23, remains rarely reported. In this study, we identified a novel ST6417 CR-hvKP strain derived from ST23, carrying blaNDM-5 on an IncX3 plasmid conferring resistance to carbapenems. In addition, we elucidate its virulence, resistance to drugs, and genetic characteristics. The discovery of ST6417 highlights the diverse pathways in the evolution of CR-hvKP, warranting increased attention.
Collapse
Affiliation(s)
- Junnian Liu
- Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sue Yuan
- Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Luhan Xuan
- Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Sun
- Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinyu Zhang
- Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lu Qiao
- Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuefei Du
- Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Jiang M, Zhang H, Lu W, Qiu X, Lin C, Zhao R, Li Q, Wu Q. Molecular Characteristics of Virulence Genes in Carbapenem-Resistant and Carbapenem-Sensitive Klebsiella Pneumoniae in Relation to Different Capsule Serotypes in Ningbo, China. Infect Drug Resist 2024; 17:2109-2120. [PMID: 38828374 PMCID: PMC11141717 DOI: 10.2147/idr.s461666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background Klebsiella pneumoniae (KP) is a common nosocomial pathogen. Capsules are an important component of KP's virulence, among which the K1, K2, K5, K20, K54, and K57 serotypes are predominant and exhibit varying degrees of virulence. Methods The capsule and virulence genes of 150 carbapenem-resistant Klebsiella pneumoniae (CRKP) and 213 carbapenem-sensitive Klebsiella pneumoniae (CSKP) isolates were examined by polymerase chain reaction (PCR). The isolates were tested for hypermucoviscosity by string tests. Phylogenetic relationships between KP isolates were analyzed using multilocus sequence typing (MLST) and a Galleria mellonella infection model confirmed the differences in virulence. Results A total of 111 of 363 isolates of KP were detected, the highest detected serotypes were K1, K5, and K2, and CSKP was detected more frequently than CRKP. There was a greater prevalence of K1 and K2 serotypes in CSKP, while in CRKP, K5 serotypes were more prevalent. K1 isolates had the highest detection rates for hypermucoviscosity Klebsiella pneumoniae (hmKP) and hypervirulent Klebsiella pneumoniae (hvKP), and carried the most virulence genes. K54 isolates had the lowest detection rate of hmKP while K5 isolates had the lowest detection rate of hvKP and carried the fewest virulence genes. MLST results for serotypes K1, K20, and K57 showed significant homogeneity, while those for serotypes K2, K5, and K54 showed diversity. The Galleria mellonella infection model showed that the K1 serotype was the most virulent and the K54 serotype was the weakest. Conclusion CSKP isolates were detected more frequently than CRKP isolates for capsular serotype detection. K1 isolates had the most virulence gene and strongest virulence, K5 isolates carried the fewest virulence genes, and K54 isolates had the weakest virulence. Furthermore, significant homogeneity was observed among K1, K20, and K57 isolates.
Collapse
Affiliation(s)
- Min Jiang
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Hui Zhang
- Clinical Laboratory, Ninghai County Chengguan Hospital, Ningbo, Zhejiang Province, People’s Republic of China
| | - Wenjun Lu
- Intensive Care Units, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Xuedan Qiu
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Chenyao Lin
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Rongqing Zhao
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Qingcao Li
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Qiaoping Wu
- Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, Luo TL, Martin MJ, Corey BW, Moser KA, Rasheed JK, Halpin AL, McGann PT, Lebreton F. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. mBio 2024; 15:e0286723. [PMID: 38231533 PMCID: PMC10865842 DOI: 10.1128/mbio.02867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g., siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Furthermore, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N = 16) or cKp (N = 33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression, the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49), respectively. These findings can be used to inform the identification of hvKp.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all five of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which, in turn, would assist in optimizing patient care.
Collapse
Affiliation(s)
- Thomas A. Russo
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
- The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Cassandra L. Alvarado
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Connor J. Davies
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Zachary J. Drayer
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Ulrike Carlino-MacDonald
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ting L. Luo
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Melissa J. Martin
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brendan W. Corey
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kara A. Moser
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J. Kamile Rasheed
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison L. Halpin
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick T. McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Yang P, Liu C, Du P, Yi J, Wu Z, Zheng J, Shen N, Cui L, Lu M. ST218 Klebsiella pneumoniae became a high-risk clone for multidrug resistance and hypervirulence. BMC Microbiol 2024; 24:56. [PMID: 38347440 PMCID: PMC10860259 DOI: 10.1186/s12866-024-03205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The occurrence of multidrug-resistant and hypervirulent Klebsiella pneumoniae (MDR-hvKp) worldwide poses a great challenge for public health. Few studies have focused on ST218 MDR-hvKp. METHODS Retrospective genomic surveillance was conducted at the Peking University Third Hospital from 2017 and clinical information was obtained. To understand genomic and microbiological characteristics, antimicrobial susceptibility testing, plasmid conjugation and stability, biofilm formation, serum killing, growth curves and whole-genome sequencing were performed. We also assessed the clinical and microbiological characteristics of ST218 compared with ST23. RESULTS A total of eleven ST218 Kp isolates were included. The most common infection type was lower respiratory tract infection (72.7%, 8/11) in our hospital, whereas ST23 hvKp (72.7%, 8/11) was closely associated with bloodstream infection. Notably, nosocomial infections caused by ST218 (54.5%, 6/11) was slightly higher than ST23 (36.4%, 4/11). All of the ST218 and ST23 strains presented with the virulence genes combination of iucA + iroB + peg344 + rmpA + rmpA2. Interestingly, the virulence score of ST218 was lower than ST23, whereas one ST218 strain (pPEKP3107) exhibited resistance to carbapenems, cephalosporins, β-lactamase/inhibitors and quinolones and harbored an ~ 59-kb IncN type MDR plasmid carrying resistance genes including blaNDM-1, dfrA14 and qnrS1. Importantly, blaNDM-1 and qnrS1 were flanked with IS26 located within the plasmid that could successfully transfer into E. coli J53. Additionally, PEKP2044 harbored an ~ 41-kb resistance plasmid located within tetA indicating resistance to doxycycline. CONCLUSION The emergence of blaNDM-1 revealed that there is great potential for ST218 Kp to become a high-risk clone for MDR-hvKp, indicating the urgent need for enhanced genomic surveillance.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chao Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | | | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China.
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, China.
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
6
|
Liu Y, Jian Z, Wang Z, Yang A, Liu P, Tang B, Wang J, Yan Q, Liu W. Clinical Characteristics and Molecular Epidemiology of ST23 Klebsiella pneumoniae in China. Infect Drug Resist 2023; 16:7597-7611. [PMID: 38107431 PMCID: PMC10723190 DOI: 10.2147/idr.s428067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose In clinical settings, CG23 Klebsiella pneumoniae (Kp) is the most virulent clonal group of Kp. Continuous fusions of hypervirulent (Hv) and highly resistant strains have been reported; however, few studies have analysed the molecular epidemiology and clinical characteristics of CG23 strains, especially MDR-sequence type ST23 strains. In this study, we investigated the molecular characteristics of ST23 Kp and analysed the clinical characteristics of ST23 Kp infections in a large teaching hospital of the third class in China. Methods ST23 Kp isolates were screened using whole-genome sequencing data from a large single centre. We compared the clinical characteristics of ST23 strains isolated from community-acquired infections (CAI) and hospital acquired infection (HAI). In addition, the infection characteristics of MDR and poor-prognosis isolates were investigated. We analysed genetic characteristics of ST23 Kp and further investigated the evolutionary relationship based on single-nucleotide polymorphism phylogenetic trees. Results We detected 184 ST23 strains between 2013 and July of 2018. There were no significant differences between the isolation rates of pulmonary, bloodstream, urinary tract, and cutaneous soft tissue infections in the community and hospitals, except for abscess infections. MDR strains primarily cause pulmonary infections and abscesses; infections with a poor prognosis are typically bloodstream and pulmonary infections. Fourteen MDR strains producing extended-spectrum or class C beta-lactamases, resulting in resistance to third-generation cephalosporins. In 3.8% of ST23 Kp strains, the clb locus was absent. The phylogenetic tree revealed that the isolates were primarily divided into three clades, and based on clinical data, it is inferred that three clonal transmission events have occurred, mainly in ICU causing lung infection. Conclusion This study demonstrates that virulence and drug-resistance fusion events of ST23 strains occur gradually, and that the hypervirulent clones facilitate the widespread dissemination of CAI and HAI, particularly pulmonary. Monitoring genomics and developing antivirulence strategies are essential.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhiqian Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Awen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Peilin Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Bin Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jiahui Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, People’s Republic of China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
7
|
Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, Luo TL, Martin MJ, Corey BW, Moser KA, Rasheed JK, Halpin AL, McGann PT, Lebreton F. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547231. [PMID: 37961280 PMCID: PMC10634668 DOI: 10.1101/2023.06.30.547231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combination of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g. siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Further, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combination of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N=16) or cKp (N=33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥ 4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49) respectively. These findings can be used to inform the identification of hvKp. Importance Hypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all 5 of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥ 4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which in turn would assist in optimizing patient care.
Collapse
|
8
|
He W, Wu C, Chen G, Zhang G, Zhao Z, Wen S, Zhou Y, Deng X, Feng Y, Zhong LL, Tian GB, Dai M. Comparative Genomic Analysis of Hypervirulence Carbapenem-Resistant Klebsiella pneumoniae from Inpatients with Infection and Gut Colonization, China. Infect Drug Resist 2023; 16:5251-5261. [PMID: 37601558 PMCID: PMC10437719 DOI: 10.2147/idr.s416770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Background The emergence and spread of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is a potential epidemiological threat that needs to be monitored. However, the transmission and pathogenic characteristics of hv-CRKP in China remain unclear. We investigated the epidemiological characteristics of gut colonized hv-CRKP in a hospital in Guangdong Province, China. Methods A total of 46 gut colonized hv-CRKP isolates were collected from Sun Yat-Sen Memorial Hospital (Guangzhou, China) from August 31st to December 31st, 2021. Minimum inhibitory concentrations (MICs) were obtained for 15 antibiotics for 46 hv-CRKP isolates. BALB/C mice infection model and mucoviscosity assay was used to evaluate the virulence of the isolates. The characteristics of genome, phylogenetic relationship and the structure of the plasmid of 46 gut colonized hv-CRKP isolates were compared with pathogenic isolates from GeneBank based on whole-genome data. Results The hv-CRKP isolation rate of all gut colonized carbapenem-resistant Klebsiella pneumoniae was 17% (46/270), and the intestinal colonization rate of hv-CRKP was irrelevant to the sex, age, department of hospitalization, and history of antibiotic use of the host. The gut colonized hv-CRKP showed pandrug resistance and hypervirulence. The gut colonized hv-CRKP and pathogenic hv-CRKP prevalent in China were mainly ST11 hv-CRKP and had two major epidemic clades. The similarities in genomic characteristics between gut colonized hv-CRKP and pathogenic hv-CRKP were consistent. The gut colonized hv-CRKP carried an incomplete structure pK2044 virulence plasmid from hypervirulent K. pneumoniae NTUH-K2044 by analyzing the virulence plasmid structure. Conclusion Our results suggest that the gut colonized ST11 hv-CRKP may serve as a reservoir for the clinical pathogenic ST11 HV-CRKP. It is necessary to further strengthen the monitoring of gut colonized hv-CRKP and research the potential mechanism of infection caused by gut colonized hv-CRKP.
Collapse
Affiliation(s)
- Wan He
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Changbu Wu
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Guanping Chen
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Guili Zhang
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Zihan Zhao
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Shu’an Wen
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Yuan Zhou
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Xue Deng
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Yu Feng
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Lan-Lan Zhong
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Guo-Bao Tian
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| |
Collapse
|
9
|
Liu P, Yang A, Tang B, Wang Z, Jian Z, Liu Y, Wang J, Zhong B, Yan Q, Liu W. Molecular epidemiology and clinical characteristics of the type VI secretion system in Klebsiella pneumoniae causing abscesses. Front Microbiol 2023; 14:1181701. [PMID: 37266024 PMCID: PMC10230222 DOI: 10.3389/fmicb.2023.1181701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Purpose The type VI system (T6SS) has the potential to be a new virulence factor for hypervirulent Klebsiella pneumoniae (hvKp) strains. This study aimed to characterize the molecular and clinical features of T6SS-positive and T6SS-negative K. pneumoniae isolates that cause abscesses. Patients and methods A total of 169 non-duplicate K. pneumoniae strains were isolated from patients with abscesses in a tertiary hospital in China from January 2018 to June 2022, and clinical data were collected. For all isolates, capsular serotypes, T6SS genes, virulence, and drug resistance genes, antimicrobial susceptibility testing, and biofilm formation assays were assessed. Multilocus sequence typing was used to analyze the genotypes of hvKp. T6SS-positive hvKp, T6SS-negative hvKp, T6SS-positive cKP, and T6SS-negative cKP (n = 4 strains for each group) were chosen for the in vivo Galleria mellonella infection model and in vitro competition experiments to further explore the microbiological characteristics of T6SS-positive K. pneumoniae isolates. Results The positive detection rate for T6SS was 36.1%. The rates of hvKp, seven virulence genes, K1 capsular serotype, and ST23 in T6SS-positive strains were all higher than those in T6SS-negative strains (p < 0.05). Multivariate logistic regression analysis indicated that the carriage of aerobactin (OR 0.01) and wcaG (OR 33.53) were independent risk factors for T6SS-positive strains (p < 0.05). The T6SS-positive strains had a stronger biofilm-forming ability than T6SS-negative strains (p < 0.05). The T6SS-positive and T6SS-negative strains showed no significant differences in competitive ability (p = 0.06). In the in vivo G. mellonella infection model, the T6SS(+)/hvKP group had the worst prognosis. Except for cefazolin and tegacyclin, T6SS-positive isolates displayed a lower rate of antimicrobial resistance to other drugs (p < 0.05). The T6SS-positive isolates were more likely to be acquired from community infections (p < 0.05). Conclusion Klebsiella pneumoniae isolates causing abscesses have a high prevalence of T6SS genes. T6SS-positive K. pneumoniae isolates are associated with virulence, and the T6SS genes may be involved in the hvKp virulence mechanism.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Awen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiqian Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahui Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
10
|
Liu C, Du P, Yang P, Lu M, Shen N. Fusion plasmid enhanced the endemic extensively drug resistant Klebsiella pneumoniae clone ST147 harbored bla OXA-48 to acquire the hypervirulence and cause fatal infection. Ann Clin Microbiol Antimicrob 2023; 22:11. [PMID: 36788555 PMCID: PMC9927049 DOI: 10.1186/s12941-022-00551-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Klebsiella Pneumoniae (Kp) sequence type (ST) 147 has emerged globally and spread rapidly, particularly the extensively drug resistant (XDR) isolates. However, the infections caused by this subtype is rare reported in China for now. The clinical, microbiological and genomic characteristics are unclear. METHODS A systemic retrospective study was conducted in a Chinese tertiary hospital. Clinical information of the infection cases was collected, and whole-genome sequencing and phenotypic experiments were performed on the ST147 isolates. The resistance and virulence genes were identified, and the plasmids harboring these genes were further studied. RESULTS Six ST147 isolates from six patients among 720 available clincial Kp isolates were detected. Notably, two isolates, PEKP4035 and PEKP4265, represented both XDR and hypervirulence by acquiring blaOXA-48, blaCTX-M-15 and key virulence genes, iucA + rmpA2, representing no fitness cost and resulting fatal infection. Four of the six ST147 isolates presented with more nucleotide differences, whereas the PEKP4035 and PEKP4265 both isolated from the intensive care unit possessed 20 single nucleotide polymorphisms among one year, indicating the prolonged survive and transmission. Interestingly, the two isolates harbored the same fused plasmid composed of sul2 and iucA + rmpA2, which might be generated by recombination of a plasmid like KpvST101_OXA-48 with the pLVPK plasmid via IS26. Besides, two ~ 70 kb plasmids conferring multiple-drug resistance were also identified among the two isolates, which presented resistance genes including blaOXA-48, blaCTX-M-16, strA and strB. Interestingly, we reported that blaCTX-M-15, a common resistance gene within ST147, has successfully transferred into the chromosome by ISEcp1. CONCLUSIONS XDR hypervirulent ST147 Kp is emerging, suggesting enhanced surveillance is essential.
Collapse
Affiliation(s)
- Chao Liu
- grid.411642.40000 0004 0605 3760Department of Infectious Disease, Peking University Third Hospital, Beijing, China ,grid.411642.40000 0004 0605 3760Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | | | - Ping Yang
- grid.411642.40000 0004 0605 3760Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ming Lu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Center of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| | - Ning Shen
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Center of Infectious Disease, Peking University Third Hospital, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China. .,Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
11
|
Liu C, Du P, Yang P, Yi J, Lu M, Shen N. Emergence of Extensively Drug-Resistant and Hypervirulent KL2-ST65 Klebsiella pneumoniae Harboring blaKPC-3 in Beijing, China. Microbiol Spectr 2022; 10:e0304422. [PMID: 36374105 PMCID: PMC9769991 DOI: 10.1128/spectrum.03044-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKp) has been emerging worldwide. However, the clinical, microbiological, and genomic characteristics of newly emerged MDR sequence type 65 (ST65) hvKp are unclear. We conducted active longitudinal genomic surveillance of K. pneumoniae in the hospital starting in 2017. Clinical characteristics, including demographic data, infection type, and outcomes, were collected. Whole-genome sequencing was performed to clarify phylogenetic and plasmid features, and phenotype determined by growth curves, plasmid transferability and stability, hypermucoviscosity, biofilm formation, and serum survival were analyzed to microbiologically characterize ST65 in depth. Ten ST65 (1.4%, 10/720) isolates were detected from 720 K. pneumoniae isolates in total. Nine patients (90%, 9/10) were older than 60 years and had multiple underlying diseases. All ST65 K. pneumoniae isolates harbored iucA, rmpA, rmpA2, iroB, and peg344 and were identified as hvKp. Surprisingly, two MDR-hvKp isolates that grew slowly were observed. Isolate PEKP4222 harbored a pLVPK-like plasmid and a conjunctive MDR plasmid. Isolate P1 harbored blaKPC-3 in a new plasmid, pP1-54, resulting in an extensively drug-resistant (XDR) phenotype; this isolate, which might have evolved from a strain harboring blaKPC-2, resulted in fatal infection. The pP1-54 plasmid could not be transferred to Escherichia coli by conjugation but could be stably inherited vertically. Interestingly, P1 also carried the pLVPK-like plasmid and acquired various antimicrobial resistance genes, and blaCTX-M-3 was detected in the IncB/O/K/Z plasmid. The convergence of XDR and hypervirulence within classical ST65 hvKp is emerging, highlighting the need for enhanced genomic surveillance. IMPORTANCE XDR-hvKp poses a great challenge to public health. ST65, a classical hvKp subtype, mostly presented with hypermucoviscosity, which restricts antimicrobial resistance acquisition. However, few studies have demonstrated the clinical, microbiological, and genomic characteristics of ST65, especially MDR-ST65 hvKp. Here, we first reported that ST65 hvKp acquired blaKPC-3 and then conferred the XDR-hvKp phenotype. Genomic context analysis concluded that the blaKPC-3 gene might have evolved from blaKPC-2. Additionally, the pLVPK-like plasmid seemed to acquire more resistance genes, and blaCTX-M-3 located in the IncB/O/K/Z plasmid was observed. The XDR-hvKp phenotype could be stably inherited vertically, indicating that strains harboring blaKPC-3 and pLVPK-like plasmids could persistently exist in hospital settings. These data suggest that genomic adaptation is rapid and that enhanced surveillance is essential.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
| | | | - Ping Yang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ming Lu
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ning Shen
- Department of Infectious Disease, Peking University Third Hospital, Beijing, China
- Center of Infectious Disease, Peking University Third Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics (Basel) 2022; 11:antibiotics11050596. [PMID: 35625240 PMCID: PMC9137517 DOI: 10.3390/antibiotics11050596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequencing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucoviscous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofurantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602, pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1,blaCTX-M-15, sul2, APH(3″)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6 and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9), T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hypermucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators (rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous regulators and lacking the common capsule regulators, which needs more focus to highlight their epidemiological role.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +0096-6549087515
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan;
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|