1
|
Vasiliauskaitė L, Bakuła Z, Vasiliauskienė E, Bakonytė D, Decewicz P, Dziurzyński M, Proboszcz M, Davidavičienė EV, Nakčerienė B, Krenke R, Kačergius T, Stakėnas P, Jagielski T. Detection of multidrug-resistance in Mycobacterium tuberculosis by phenotype- and molecular-based assays. Ann Clin Microbiol Antimicrob 2024; 23:81. [PMID: 39198827 PMCID: PMC11360294 DOI: 10.1186/s12941-024-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The whole-genome sequencing (WGS) is becoming an increasingly effective tool for rapid and accurate detection of drug resistance in Mycobacterium tuberculosis complex (MTBC). This approach, however, has still been poorly evaluated on strains from Central and Eastern European countries. The purpose of this study was to assess the performance of WGS against conventional drug susceptibility testing (DST) for the detection of multi-drug resistant (MDR) phenotypes among MTBC clinical strains from Poland and Lithuania. METHODS The study included 208 MTBC strains (130 MDR; 78 drug susceptible), recovered from as many tuberculosis patients in Lithuania and Poland between 2018 and 2021. Resistance to rifampicin (RIF) and isoniazid (INH) was assessed by Critical Concentration (CC) and Minimum Inhibitory Concentration (MIC) DST as well as molecular-based techniques, including line-probe assay (LPA) and WGS. The analysis of WGS results was performed using bioinformatic pipeline- and software-based tools. RESULTS The results obtained with the CC DST were more congruent with those by LPA compared to pipeline-based WGS. Software-based tools showed excellent concordance with pipeline-based analysis in prediction of RIF/INH resistance. The RIF-resistant strains demonstrated a relatively homogenous MIC distribution with the mode at the highest tested MIC value. The most frequent RIF-resistance conferring mutation was rpoB S450L. The mode MIC for INH was two-fold higher among double katG and inhA mutants than among single katG mutants. The overall rate of discordant results between all methods was calculated at 5.3%. Three strains had discordant results by both genotypic methods (LPA and pipeline-based WGS), one strain by LPA only, three strains by MIC DST, two strains by both MIC DST and pipeline-based WGS, and the remaining two strains showed discordant results with all three methods, compared to CC DST. CONCLUSIONS Considering MIC DST results, current CCs of the first-line anti-TB drugs might be inappropriately high and may need to be revised. Both molecular methods demonstrated 100% specificity, while pipeline-based WGS had slightly lower sensitivity for RIF and INH than LPA, compared to CC DST.
Collapse
Affiliation(s)
- Laima Vasiliauskaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Zofia Bakuła
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edita Vasiliauskienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Daiva Bakonytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonology, and Allergology, Warsaw Medical University, Warsaw, Poland
| | - Edita Valerija Davidavičienė
- Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Birutė Nakčerienė
- Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonology, and Allergology, Warsaw Medical University, Warsaw, Poland
| | - Tomas Kačergius
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Petras Stakėnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Sun H, Ma Z, Ai F, Han B, Li P, Liu J, Wu Y, Wang Y, Li B, Qi D, Pang Y. Insidious transmission of Mycobacterium tuberculosis in Ordos, China: a molecular epidemiology study. Eur J Clin Microbiol Infect Dis 2024; 43:305-312. [PMID: 38055064 DOI: 10.1007/s10096-023-04730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND In this study, we conducted this population-based study to evaluate the genetic diversity and clustering rate of Mycobacterium tuberculosis (MTB) strains using the whole-genome sequencing (WGS), to better understand its transmission in Ordos. METHODS All patients with culture-positive TB notified in Ordos from January 2021 to December 2022 were recruited. WGS was performed to analyze single-nucleotide polymorphism (SNP) and to identify genotypic drug susceptibilities of MTB isolates. RESULTS Overall, a total of 186 patients were included in the present study, of whom 35 (18.8%) had no symptoms suggestive of active TB. Lineage 2 was the predominant MTB sublineage, accounting for 186 of isolates tested. When the pairwise SNP difference ≤ 12 was used as the cutoff for WGS-based clusters, we identified 17 genotypic clusters, and 38 isolates belonged to these 17 clusters, resulting in a clustering rate of 20.4%. The Beijing genotype was an independent factor associating with genomic-clustering (adjusted OR 4.219, 95% CI 0.962-18.502). The overall sensitivity on WGS-based resistance prediction was 85.7% for rifampicin, 73.1% for isoniazid, 60.0% for Ethambutol, 72.7% for streptomycin, and 72.7% for fluoroquinolones. CONCLUSION To conclude, the present study demonstrates the extensive recent transmission of Beijing genotype strains in the community of Ordos. The failure to provide a comprehensive pattern of transmission indicated the missed diagnosis of active TB within the community. A substantial proportion of subclinical TB cases are recognized in the bacteria-positive cases, emphasizing that we must interrupt transmission by finding people with active TB before they infect others.
Collapse
Affiliation(s)
- Hailin Sun
- Department of Tuberculosis, The Second People Hospital of Ordos, Ordos, China
| | - Zichun Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Fuli Ai
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Bing Han
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Peng Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Juan Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Yiheng Wu
- Department of Tuberculosis, The Second People Hospital of Ordos, Ordos, China
| | - Yufeng Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Bing Li
- Ordos Center for Disease Control and Prevention, Ordos, China
| | - Dan Qi
- Ordos Center for Disease Control and Prevention, Ordos, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Postal No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
3
|
Qadir M, Faryal R, Khan MT, Khan SA, Zhang S, Li W, Wei DQ, Tahseen S, McHugh TD. Phenotype versus genotype discordant rifampicin susceptibility testing in tuberculosis: implications for a diagnostic accuracy. Microbiol Spectr 2024; 12:e0163123. [PMID: 37982632 PMCID: PMC10783056 DOI: 10.1128/spectrum.01631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An accurate diagnosis of drug resistance in clinical isolates is an important step for better treatment outcomes. The current study observed a higher discordance rate of rifampicin resistance on Mycobacteria Growth Indicator Tube (MGIT) drug susceptibility testing (DST) than Lowenstein-Jenson (LJ) DST when compared with the rpoB sequencing. We detected a few novel mutations and their combination in rifampicin resistance isolates that were missed by MGIT DST and may be useful for the better management of tuberculosis (TB) treatment outcomes. Few novel deletions in clinical isolates necessitate the importance of rpoB sequencing in large data sets in geographic-specific locations, especially high-burden countries. We explored the discordance rate on MGIT and LJ, which is important for the clinical management of rifampicin resistance to avoid the mistreatment of drug-resistant TB. Furthermore, MGIT-sensitive isolates may be subjected to molecular methods of diagnosis for further confirmation and treatment options.
Collapse
Affiliation(s)
- Mehmood Qadir
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rani Faryal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tahir Khan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sajjad Ahmed Khan
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Shulin Zhang
- School of Medicine, Department of Immunology and Microbiology, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dong Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Sabira Tahseen
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Li K, Hu Q, Liu J, Liu S, He Y. Effects of sputum bacillary load and age on GeneXpert and traditional methods in pulmonary tuberculosis: a 4-year retrospective comparative study. BMC Infect Dis 2023; 23:831. [PMID: 38012541 PMCID: PMC10680317 DOI: 10.1186/s12879-023-08832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the diagnostic value of the GeneXpert® MTB/RIF (Xpert®), Auramine O staining method, and Lowenstein-Jensen medium for bacteriologically confirmed pulmonary tuberculosis and explore the effects of the sputum bacillary load (SBL) and qRT‒PCR threshold cycle (Ct) value on the detection methods. METHODS We retrospectively analysed the results in the Department of Infectious Disease for 49 months. The χ2 test was used to compare the performances of each method, receiver operating characteristic curve analysis was used to determine the optimal cut-off values, and the factors associated with a false-negative result from Xpert® were analysed by logistic regression. RESULTS Simultaneous analysis of 980 sputum specimens showed that the positive detection rate of Xpert® did not increase with increasing SBL, and there were differences between the three when SBL ≤ 1 + (all P < 0.05). There was a good negative correlation between the Ct value and the SBL (P < 0.0001). Age was an independent risk factor for false-negative Xpert® results (P = 0.029), and when Ct < 16, the diagnostic sensitivity and specificity were both 100.00%. The optimal cut-off Ct values for resegmentation based on the drug resistance classification were < 18.6, 18.6-34.1, and > 34.1 cycles. CONCLUSIONS Xpert® was not affected by SBL but it was by age, and it is more advantageous when SBL ≤ 1 + . The results regarding rifampicin resistance were reliable, and the novel Ct segmentation was a practical and more clinically meaningful classification method for diagnosing rifampicin resistance. These findings will help improve physicians' ability to accurately diagnose TB.
Collapse
Affiliation(s)
- Kui Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West YantaRoad, Xi'an, Shaanxi Province, 710061, China
- Department of Infectious Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, Shaanxi Province, 725000, China
| | - Qianqian Hu
- Laboratory of Molecular Pathology and Tuberculosis Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, Shaanxi Province, 725000, China
| | - Jun Liu
- Laboratory of Molecular Pathology and Tuberculosis Diseases, Ankang Central Hospital, 85 South Jinzhou Road, Ankang, Shaanxi Province, 725000, China
| | - Siyi Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West YantaRoad, Xi'an, Shaanxi Province, 710061, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West YantaRoad, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
5
|
Graciaa DS, Schechter MC, Fetalvero KB, Cranmer LM, Kempker RR, Castro KG. Updated considerations in the diagnosis and management of tuberculosis infection and disease: integrating the latest evidence-based strategies. Expert Rev Anti Infect Ther 2023; 21:595-616. [PMID: 37128947 PMCID: PMC10227769 DOI: 10.1080/14787210.2023.2207820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a leading infectious cause of global morbidity and mortality, affecting nearly a quarter of the human population and accounting for over 10 million deaths each year. Over the past several decades, TB incidence and mortality have gradually declined, but 2021 marked a threatening reversal of this trend highlighting the importance of accurate diagnosis and effective treatment of all forms of TB. AREAS COVERED This review summarizes advances in TB diagnostics, addresses the treatment of people with TB infection and TB disease including recent evidence for treatment regimens for drug-susceptible and drug-resistant TB, and draws attention to special considerations in children and during pregnancy. EXPERT OPINION Improvements in diagnosis and management of TB have expanded the available options for TB control. Molecular testing has enhanced the detection of TB disease, but better diagnostics are still needed, particularly for certain populations such as children. Novel treatment regimens have shortened treatment and improved outcomes for people with TB. However, important questions remain regarding the optimal management of TB. Work must continue to ensure the potential of the latest developments is realized for all people affected by TB.
Collapse
Affiliation(s)
- Daniel S. Graciaa
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcos Coutinho Schechter
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Krystle B. Fetalvero
- Angelo King Medical Research Center-De La Salle Medical and Health Science Institute, Cavite, Philippines
- Department of Family and Community Medicine, Calamba Medical Center, Laguna, Philippines
| | - Lisa Marie Cranmer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Russell R. Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth G. Castro
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Performance Evaluation of the BACTEC MGIT 960 System for Rifampin Drug-Susceptibility Testing of Mycobacterium tuberculosis Using the Current WHO Critical Concentration. J Clin Microbiol 2023; 61:e0108622. [PMID: 36602360 PMCID: PMC9879093 DOI: 10.1128/jcm.01086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The World Health Organization recently lowered the rifampin (RIF) critical concentration (CC) for drug-susceptibility testing (DST) of Mycobacterium tuberculosis complex (MTBC) using the mycobacterial growth indicator tube (MGIT) 960 system. Here, we evaluated the diagnostic performance of the MGIT system with the revised CC for determining MTBC RIF resistance with 303 clinical MTBC isolates, including 122 isolates with rpoB mutations, of which 32 had single borderline-resistance mutations, and 181 wild-type rpoB isolates. The phenotypic RIF resistance was determined via the absolute concentration method (AC) and via MGIT using both previous (1 mg/L) and revised (0.5 mg/L) CCs for the latter method. The diagnostic accuracy of each phenotypic DST (pDST) was assessed based on rpoB genotyping as the reference standard. The overall sensitivity of the AC was 95.1% (95% confidence interval [CI], 89.6 to 98.2%), while the MGIT results with previous and revised CCs were 82.0% (95% CI 74.0 to 88.3%) and 83.6% (95% CI 75.8 to 89.7%), respectively. The 32 MTBC isolates with single borderline-resistance mutations showed a wide range of MICs, and sensitivity was not significantly increased by reducing the MGIT CC. All 181 wild-type rpoB isolates were RIF-susceptible in the AC and with MGIT using the previous CC, whereas 1 isolate was misclassified as RIF-resistant with the revised CC. Our results demonstrate that the overall diagnostic performances of the MGIT DST with the revised RIF CC and previous CC were comparable. A further large-scale study is required to demonstrate the optimal RIF CC for MGIT.
Collapse
|
7
|
Koirala N, Butnariu M, Panthi M, Gurung R, Adhikari S, Subba RK, Acharya Z, Popović-Djordjević J. Antibiotics in the management of tuberculosis and cancer. ANTIBIOTICS - THERAPEUTIC SPECTRUM AND LIMITATIONS 2023:251-294. [DOI: 10.1016/b978-0-323-95388-7.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|