1
|
Gatti M, Cojutti PG, Pea F. Piperacillin-tazobactam vs. carbapenems for treating hospitalized patients with ESBL-producing Enterobacterales bloodstream infections: A systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 39:27-36. [PMID: 39173739 DOI: 10.1016/j.jgar.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVES To meta-analyse the clinical efficacy of piperacillin-tazobactam vs. carbapenems for treating hospitalized patients affected by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales bloodstream infections (BSIs). METHODS Two authors independently searched PubMed-MEDLINE and Scopus database up to January 17, 2024, to retrieve randomized controlled trials (RCTs) or observational studies comparing piperacillin-tazobactam vs. carbapenems for the management of hospitalized patients with ESBL-BSIs. Data were independently extracted by the two authors, and the quality of included studies was independently assessed according to ROB 2.0 or ROBINS-I tools. Mortality rate was selected as primary outcome. Meta-analysis was performed by pooling odds ratios (ORs) retrieved from studies providing adjustment for confounders using a random-effects model with the inverse variance method. RESULTS After screening 3,418 articles, 10 studies were meta-analysed (one RCT and nine retrospective observational studies; N = 1,962). Mortality rate did not significantly differ between treatment with piperacillin-tazobactam vs. carbapenems (N = 6; OR: 1.41; 95% CI: 0.96-2.07; I² = 23.6%). The findings were consistent also in subgroup analyses assessing patients receiving empirical therapy (N = 5; OR: 1.36; 95% CI: 0.99-1.85), or patients having in ≥50% of cases urinary/biliary tract as the primary BSI source (N = 2; OR: 1.26; 95% CI: 0.84-1.89). Conversely, the mortality rate was significantly higher with piperacillin-tazobactam only among patients having in <50% of cases urinary/biliary tract as the primary source of BSI (N = 3; OR: 2.02; 95% CI: 1.00-4.07). CONCLUSIONS This meta-analysis showed that, after performing appropriate adjustments for confounders, mortality and clinical outcome in patients having ESBL-producing Enterobacterales BSIs did not significantly differ among those receiving piperacillin-tazobactam compared to those receiving carbapenems.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Pier Giorgio Cojutti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Kayinamura MP, Muhirwa A, Kamaliza AC, Bigirimana Y, Rutare S, Hahirwa I, Nkubana T, Dusabe A, Munyemana JB. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae and Associated Clinical Implications at the University Teaching Hospital of Kigali in Rwanda. Am J Trop Med Hyg 2024; 111:565-568. [PMID: 39013384 PMCID: PMC11376162 DOI: 10.4269/ajtmh.23-0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/08/2024] [Indexed: 07/18/2024] Open
Abstract
Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae poses a global problem and complicates therapeutic choices. The paucity of data in resource-poor countries undermines the understanding of the problem's extent, and cases of antimicrobial treatment failure continue to accumulate. This study aimed to determine the prevalence and clinical implications of ESBL-producers at the University Teaching Hospital of Kigali in Rwanda. A 1-year cross-sectional retrospective study was conducted on Escherichia coli and Klebsiella pneumoniae isolated in blood and urine from January 1 to December 31, 2022. In total, 1,283 isolates were recorded. The results showed an overall prevalence of ESBL phenotypes at 300/1,283 (23.4%). Extended spectrum beta-lactamase-positive E. coli was more frequently detected than K. pneumoniae in both urine (20.6% versus 10.1%) and blood (8.8% versus 6.2%). These isolates were 100% resistant to amoxicillin-clavulanic acid, third-generation cephalosporins, piperacillin, sulbactam ampicillin, ampicillin, cefuroxime, and cefoxitin. The least resistance was observed to amikacin (18%), meropenem (10%), and polymyxin B (3%). Hospital stays ranging from 8 to 21 days were the most frequent, and the mortality rate was 10.3% in patients with ESBL cases, which was more than double the general hospital mortality rate in the same period. In conclusion, our findings indicate a high prevalence of ESBL phenotypes, high antibiotic resistance rates, prolonged hospital stays, and an increased mortality rate. These findings suggest the need for continued surveillance, planning appropriate interventions, and caution during empirical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Rutare
- University Teaching Hospital of Kigali, Kigali, Rwanda
| | - Innocent Hahirwa
- University Teaching Hospital of Kigali, Kigali, Rwanda
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | | | - Jean Bosco Munyemana
- University Teaching Hospital of Kigali, Kigali, Rwanda
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
3
|
Dulyayangkul P, Beavis T, Lee WWY, Ardagh R, Edwards F, Hamilton F, Head I, Heesom KJ, Mounsey O, Murarik M, Pinweha P, Reding C, Satapoomin N, Shaw JM, Takebayashi Y, Tooke CL, Spencer J, Williams PB, Avison MB. Harvesting and amplifying gene cassettes confers cross-resistance to critically important antibiotics. PLoS Pathog 2024; 20:e1012235. [PMID: 38843111 PMCID: PMC11156391 DOI: 10.1371/journal.ppat.1012235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.
Collapse
Affiliation(s)
- Punyawee Dulyayangkul
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Thomas Beavis
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Winnie W. Y. Lee
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robbie Ardagh
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Frances Edwards
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- North Bristol NHS Trust, Bristol, United Kingdom
| | | | - Ian Head
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Somerset NHS Foundation Trust, Taunton, United Kingdom
| | - Kate J. Heesom
- Bristol University Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Oliver Mounsey
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marek Murarik
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Peechanika Pinweha
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Carlos Reding
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Naphat Satapoomin
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - John M. Shaw
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Catherine L. Tooke
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - James Spencer
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philip B. Williams
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Matthew B. Avison
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Gatti M, Rinaldi M, Tonetti T, Siniscalchi A, Viale P, Pea F. Comparative Impact of an Optimized PK/PD Target Attainment of Piperacillin-Tazobactam vs. Meropenem on the Trend over Time of SOFA Score and Inflammatory Biomarkers in Critically Ill Patients Receiving Continuous Infusion Monotherapy for Treating Documented Gram-Negative BSIs and/or VAP. Antibiotics (Basel) 2024; 13:296. [PMID: 38666972 PMCID: PMC11047331 DOI: 10.3390/antibiotics13040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024] Open
Abstract
(1) Background: The advantage of using carbapenems over beta-lactam/beta-lactamase inhibitor combinations in critically ill septic patients still remains a debated issue. We aimed to assess the comparative impact of an optimized pharmacokinetic/pharmacodynamic (PK/PD) target attainment of piperacillin-tazobactam vs. meropenem on the trend over time of both Sequential Organ Failure Assessment (SOFA) score and inflammatory biomarkers in critically ill patients receiving continuous infusion (CI) monotherapy with piperacillin-tazobactam or meropenem for treating documented Gram-negative bloodstream infections (BSI) and/or ventilator-associated pneumonia (VAP). (2) Methods: We performed a retrospective observational study comparing critically ill patients receiving targeted treatment with CI meropenem monotherapy for documented Gram-negative BSIs or VAP with a historical cohort of critical patients receiving CI piperacillin-tazobactam monotherapy. Patients included in the two groups were admitted to the general and post-transplant intensive care unit in the period July 2021-September 2023 and fulfilled the same inclusion criteria. The delta values of the SOFA score between the baseline of meropenem or piperacillin-tazobactam treatment and those at 48-h (delta 48-h SOFA score) or at 7-days (delta 7-days SOFA) were selected as primary outcomes. Delta 48-h and 7-days C-reactive protein (CRP) and procalcitonin (PCT), microbiological eradication, resistance occurrence, clinical cure, multi-drug resistant colonization at 90-day, ICU, and 30-day mortality rate were selected as secondary outcomes. Univariate analysis comparing primary and secondary outcomes between critically ill patients receiving CI monotherapy with piperacillin-tazobactam vs. meropenem was carried out. (3) Results: Overall, 32 critically ill patients receiving CI meropenem monotherapy were compared with a historical cohort of 43 cases receiving CI piperacillin-tazobactam monotherapy. No significant differences in terms of demographics and clinical features emerged at baseline between the two groups. Optimal PK/PD target was attained in 83.7% and 100.0% of patients receiving piperacillin-tazobactam and meropenem, respectively. No significant differences were observed between groups in terms of median values of delta 48-h SOFA (0 points vs. 1 point; p = 0.89) and median delta 7-days SOFA (2 points vs. 1 point; p = 0.43). Similarly, no significant differences were found between patients receiving piperacillin-tazobactam vs. meropenem for any of the secondary outcomes. (4) Conclusion: Our findings may support the contention that in critically ill patients with documented Gram-negative BSIs and/or VAP, the decreases in the SOFA score and in the inflammatory biomarkers serum levels achievable with CI piperacillin-tazobactam monotherapy at 48-h and at 7-days may be of similar extent and as effective as to those achievable with CI meropenem monotherapy provided that optimization on real-time by means of a TDM-based expert clinical pharmacological advice program is granted.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Matteo Rinaldi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Antonio Siniscalchi
- Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (M.R.); (T.T.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| |
Collapse
|
5
|
Gatti M, Bonazzetti C, Pascale R, Giannella M, Viale P, Pea F. Real-Time TDM-Guided Optimal Joint PK/PD Target Attainment of Continuous Infusion Piperacillin-Tazobactam Monotherapy Is an Effective Carbapenem-Sparing Strategy for Treating Non-Severe ESBL-Producing Enterobacterales Secondary Bloodstream Infections: Findings from a Prospective Pilot Study. Microorganisms 2024; 12:151. [PMID: 38257978 PMCID: PMC10819442 DOI: 10.3390/microorganisms12010151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Objectives: To assess the impact of optimal joint pharmacokinetic/pharmacodynamic (PK/PD) target attainment of continuous infusion (CI) piperacillin-tazobactam monotherapy on the microbiological outcome of documented ESBL-producing Enterobacterlaes secondary bloodstream infections (BSIs). (2) Methods: Patients hospitalized in the period January 2022-October 2023, having a documented secondary BSI caused by ESBL-producing Enterobacterales, and being eligible for definitive targeted CI piperacillin-tazobactam monotherapy according to specific pre-defined inclusion criteria (i.e., absence of septic shock at onset; favorable clinical evolution in the first 48 h after starting treatment; low-intermediate risk primary infection source) were prospectively enrolled. A real-time therapeutic drug monitoring (TDM)-guided expert clinical pharmacological advice (ECPA) program was adopted for optimizing (PK/PD) target attainment of CI piperacillin-tazobactam monotherapy. Steady-state plasma concentrations (Css) of both piperacillin and tazobactam were measured, and the free fractions (f) were calculated based on theoretical protein binding. The joint PK/PD target attainment was considered optimal whenever the piperacillin fCss/MIC ratio was >4 and the tazobactam fCss/target concentration (CT) ratio was >1 (quasi-optimal or suboptimal if only one or neither of the two thresholds were achieved, respectively). Univariate analysis was carried out for assessing variables potentially associated with failure in achieving the optimal joint PK/PD target of piperacillin-tazobactam and microbiological eradication. (3) Results: Overall, 35 patients (median age 79 years; male 51.4%) were prospectively included. Secondary BSIs resulted from urinary tract infections as a primary source in 77.2% of cases. The joint PK/PD target attainment was optimal in as many as 97.1% of patients (34/35). Microbiological eradication occurred in 91.4% of cases (32/35). Attaining the quasi-optimal/suboptimal joint PK/PD target of CI piperacillin-tazobactam showed a trend toward a higher risk of microbiological failure (33.3% vs. 0.0%; p = 0.08) (4) Conclusions: Real-time TDM-guided optimal joint PK/PD target attainment of CI piperacillin-tazobactam monotherapy may represent a valuable and effective carbapenem-sparing strategy when dealing with non-severe ESBL-producing Enterobacterales secondary BSIs.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Cecilia Bonazzetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Renato Pascale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Infectious Disease Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (C.B.); (R.P.); (M.G.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Evaluation of Piperacillin-Tazobactam ETEST for the Detection of OXA-1 Resistance Mechanism among Escherichia coli and Klebsiella pneumoniae. J Clin Microbiol 2022; 60:e0143022. [PMID: 36416539 PMCID: PMC9769679 DOI: 10.1128/jcm.01430-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Globally, piperacillin-tazobactam resistance among Escherichia coli and Klebsiella pneumoniae is driven by OXA-1 beta-lactamases. Expression of blaOXA-1 yields piperacillin-tazobactam MICs of 8 to 16 μg/mL, which straddle the susceptible/susceptible-dose dependent breakpoint set by the Clinical and Laboratory Standards Institute in 2022. Variability of the reference broth microdilution method (BMD) was evaluated by manufacturing BMD panels using 2 brands of piperacillin, 2 brands of tazobactam and 2 brands of cation-adjusted Mueller-Hinton broth. In addition, ETEST, which harbors an intermediate dilution of 12 μg/mL was evaluated for the ability to differentiate isolates with and without blaOXA-1. A collection of 200 E. coli and K. pneumoniae, of which 82 harbored a blaOXA-1 gene, were tested. BMD variability was on average 1.3-fold, within the accepted 2-fold variability of MICs. However, categorical agreement (CA) between BMD reads was 74.0% for all isolates and 63.4% for those with a blaOXA-1 gene and 81.3% for those without blaOXA-1 detected (P = 0.004, Pearson's Chi Square). ETEST overall CA with the BMD mode was 68.0% and essential agreement (EA) was 80.5%. For isolates with blaOXA-1, CA was 50.0% and EA was 69.5%, versus 80.5% and 88.1%, respectively, for isolates without blaOXA-1 (P < 0.0001 for both comparisons). All ETEST errors were major errors (false resistance) compared to BMD mode. However, the negative predictive value of the ETEST for the presence of blaOXA-1 was 94.1%, compared to only 74.2% negative predictive value for BMD. Clinicians and microbiologists should be aware of the challenges associated with testing piperacillin-tazobactam in regions where blaOXA-1 is prevalent.
Collapse
|