1
|
Zhang Y, Zhang Z, Wang Z, Chen Y, Liao L, Du L, Gao H, Chen Q, Man C, Chen S, Wang F. Whole Genome Sequencing and Comparative Genomics Analysis of Goat-Derived Klebsiella oxytoca. Genes (Basel) 2024; 16:13. [PMID: 39858560 PMCID: PMC11765384 DOI: 10.3390/genes16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Background: This research aims to enhance the genomic database of Klebsiella oxytoca by identifying virulence genes through the whole genome sequencing and comparative analysis of a goat-derived K. oxytoca (KOHN1) strain, while clarifying the relationship between its genetic evolution and virulence, ultimately providing a theoretical foundation for clinical prevention and diagnosis. Methods: Third-generation Oxford Nanopore Technologies (ONT) sequencing and second-generation Illumina sequencing were used to sequence the strain and analyze the database annotations. Screening for 10 virulence genes was conducted using PCR. Comparative genomic analyses of the strain KOHN1 with four human-derived K. oxytoca model strains were performed using collinearity analysis, taxonomy classification through ANI analysis, and gene function family analysis. Results: The genome size of the KOHN1 strain was 5,817,806 bp, and the GC content was 55.14%. It contained 5227 predicted coding genes, including 25 rRNA genes, 85 tRNA genes, and 53 sRNA genes. A total of 14 type VI secretion system effector proteins and 146 virulence factor-related genes were annotated. Additionally, eight virulence genes-fimA, fimH, entB, mrkD, clpV, rmpA, vgrG, and hcp-were detected through PCR identification. The strain has 448 drug resistance genes, mainly against β-lactams and fosfomycins. Comparative genomic analysis indicated that its closest relation is the human isolate ASM338647. Conclusions: In this study, the whole genome sequence of a goat-derived K. oxytoca (KOHN1) strain was obtained, revealing its evolutionary relationship with domestic and foreign isolates and providing a reference for future studies on the mechanisms of antimicrobial resistance and the pathogenicity of K. oxytoca.
Collapse
Affiliation(s)
- Yu Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Ziying Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Yimei Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Lianjie Liao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Hongyan Gao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| | - Si Chen
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Raabe NJ, Valek AL, Griffith MP, Mills E, Waggle K, Srinivasa VR, Ayres AM, Bradford C, Creager HM, Pless LL, Sundermann AJ, Van Tyne D, Snyder GM, Harrison LH. Real-time genomic epidemiologic investigation of a multispecies plasmid-associated hospital outbreak of NDM-5-producing Enterobacterales infections. Int J Infect Dis 2024; 142:106971. [PMID: 38373647 PMCID: PMC11055495 DOI: 10.1016/j.ijid.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVES New Delhi metallo-β-lactamase (NDM) is an emergent mechanism of carbapenem resistance associated with high mortality and limited treatment options. Because the blaNDM resistance gene is often carried on plasmids, traditional infection prevention and control (IP&C) surveillance methods and reactive whole genome sequencing (WGS) may not detect plasmid transfer in multispecies outbreaks. METHODS Initial outbreak detection of NDM-producing Enterobacterales identified at an acute care hospital occurred via traditional IP&C methods and was supplemented by real-time WGS surveillance performed weekly. To resolve NDM-encoding plasmids, we performed long-read sequencing and constructed hybrid assemblies. WGS data for suspected outbreaks was shared with the IP&C team for assessment and intervention. RESULTS We observed a multispecies outbreak of NDM-5-producing Enterobacterales isolated from 15 patients between February 2021 and February 2023. The 19 clinical and surveillance isolates sequenced included 7 bacterial species encoding the same NDM-5 plasmid. WGS surveillance and epidemiologic investigation characterized 10 horizontal plasmid transfer events and 6 bacterial transmission events between patients in varying hospital units. CONCLUSIONS Our investigation revealed a complex, multispecies outbreak of NDM involving multiple plasmid transfer and bacterial transmission events. We highlight the utility of combining traditional IP&C and prospective genomic methods in identifying and containing plasmid-associated outbreaks.
Collapse
Affiliation(s)
- Nathan J Raabe
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abby L Valek
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, Pittsburgh, PA, USA
| | - Marissa P Griffith
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emma Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kady Waggle
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vatsala Rangachar Srinivasa
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley M Ayres
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, Pittsburgh, PA, USA
| | - Claire Bradford
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, Pittsburgh, PA, USA
| | - Hannah M Creager
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora L Pless
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander J Sundermann
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Graham M Snyder
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, Pittsburgh, PA, USA
| | - Lee H Harrison
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Timsit S, Armand-Lefèvre L, Le Goff J, Salmona M. The clinical and epidemiological impacts of whole genomic sequencing on bacterial and virological agents. Infect Dis Now 2024; 54:104844. [PMID: 38101516 DOI: 10.1016/j.idnow.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Whole Genome Sequencing (WGS) is a molecular biology tool consisting in the sequencing of the entire genome of a given organism. Due to its ability to provide the finest available resolution of bacterial and virological genetics, it is used at several levels in the field of infectiology. On an individual scale and through application of a single technique, it enables the typological identification and characterization of strains, the characterization of plasmids, and enhanced search for resistance genes and virulence factors. On a collective scale, it enables the characterization of strains and the determination of phylogenetic links between different microorganisms during community outbreaks and healthcare-associated epidemics. The information provided by WGS enables real-time monitoring of strain-level epidemiology on a worldwide scale, and facilitates surveillance of the resistance dissemination and the introduction or emergence of pathogenic variants in humans or their environment. There are several possible approaches to completion of an entire genome. The choice of one method rather than another is essentially dictated by the matrix, either a clinical sample or a culture isolate, and the clinical objective. WGS is an advanced technology that remains costly despite a gradual decrease in its expenses, potentially hindering its implementation in certain laboratories and thus its use in routine microbiology. Even though WGS is making steady inroads as a reference method, efforts remain needed in view of so harmonizing its interpretations and decreasing the time to generation of conclusive results.
Collapse
Affiliation(s)
- Sarah Timsit
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; Service de Bactériologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Laurence Armand-Lefèvre
- Service de Bactériologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France; IAME UMR 1137, INSERM, Université Paris Cité, Paris, France
| | - Jérôme Le Goff
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; INSERM U976, Insight Team, Université Paris Cité, Paris, France
| | - Maud Salmona
- Service de Virologie, Hôpital Saint-Louis, APHP, Paris, France; INSERM U976, Insight Team, Université Paris Cité, Paris, France.
| |
Collapse
|
4
|
Raabe NJ, Valek AL, Griffith MP, Mills E, Waggle K, Srinivasa VR, Ayres AM, Bradford C, Creager H, Pless LL, Sundermann AJ, Van Tyne D, Snyder GM, Harrison LH. Genomic Epidemiologic Investigation of a Multispecies Hospital Outbreak of NDM-5-Producing Enterobacterales Infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.31.23294545. [PMID: 37693518 PMCID: PMC10491379 DOI: 10.1101/2023.08.31.23294545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background New Delhi metallo-β-lactamase (NDM) represents an emergent mechanism of carbapenem resistance associated with high mortality and limited antimicrobial treatment options. Because the blaNDM resistance gene is often carried on plasmids, traditional infection prevention and control (IP&C) surveillance methods like speciation, antimicrobial resistance testing, and reactive whole genome sequencing (WGS) may not detect plasmid transfer in multispecies outbreaks. Methods Initial outbreak detection of NDM-producing Enterobacterales identified at an acute care hospital occurred via traditional IP&C methods and was supplemented by real-time WGS surveillance, which was performed weekly using the Illumina platform. To resolve NDM-encoding plasmids, we performed long-read Oxford Nanopore sequencing and constructed hybrid assemblies using Illumina and Nanopore sequencing data. Reports of relatedness between NDM-producing organisms and reactive WGS for suspected outbreaks were shared with the IP&C team for assessment and intervention. Findings We observed a multispecies outbreak of NDM-5-producing Enterobacterales isolated from 15 patients between February 2021 and February 2023. The 19 clinical and surveillance isolates sequenced included seven bacterial species and each encoded the same NDM-5 plasmid, which showed high homology to NDM plasmids previously observed in Asia. WGS surveillance and epidemiologic investigation characterized ten horizontal plasmid transfer events and six bacterial transmission events between patients housed in varying hospital units. Transmission prevention focused on enhanced observation and adherence to basic infection prevention measures. Interpretation Our investigation revealed a complex, multispecies outbreak of NDM that involved multiple plasmid transfer and bacterial transmission events, increasing the complexity of outbreak identification and transmission prevention. Our investigation highlights the utility of combining traditional IP&C and prospective genomic methods in identifying and containing plasmid-associated outbreaks. Funding This work was funded in part by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH) (R01AI127472) (R21AI1783691).
Collapse
Affiliation(s)
- Nathan J. Raabe
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
| | - Abby L. Valek
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA
| | - Marissa P. Griffith
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
| | - Emma Mills
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
| | - Kady Waggle
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
| | - Vatsala Rangachar Srinivasa
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
| | - Ashley M. Ayres
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA
| | - Claire Bradford
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA
| | - Hannah Creager
- Department of Pathology, University of Pittsburgh Medical Center, 200 Lothrop Street Pittsburgh, PA 15213
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop St, S-417 BST, Pittsburgh, PA 15261
| | - Lora L. Pless
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
| | - Alexander J. Sundermann
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
| | - Graham M. Snyder
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
- Department of Infection Control and Hospital Epidemiology, UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA
| | - Lee H. Harrison
- Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
5
|
Estimation, Evaluation and Characterization of Carbapenem Resistance Burden from a Tertiary Care Hospital, Pakistan. Antibiotics (Basel) 2023; 12:antibiotics12030525. [PMID: 36978392 PMCID: PMC10044297 DOI: 10.3390/antibiotics12030525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Carbapenem resistance has become major concern in healthcare settings globally; therefore, its monitoring is crucial for intervention efforts to halt resistance spread. During May 2019–April 2022, 2170 clinical strains were characterized for antimicrobial susceptibility, resistance genes, replicon and sequence types. Overall, 42.1% isolates were carbapenem-resistant, and significantly associated with Klebsiella pneumoniae (K. pneumoniae) (p = 0.008) and Proteus species (p = 0.043). Carbapenemases were detected in 82.2% of isolates, with blaNDM-1 (41.1%) associated with the ICU (p < 0.001), cardiology (p = 0.042), pediatric medicine (p = 0.013) and wound samples (p = 0.041); blaOXA-48 (32.6%) was associated with the ICU (p < 0.001), cardiology (p = 0.008), pediatric medicine (p < 0.001), general surgery (p = 0.001), general medicine (p = 0.005) and nephrology (p = 0.020); blaKPC-2 (5.5%) was associated with general surgery (p = 0.029); blaNDM-1/blaOXA-48 (11.4%) was associated with general surgery (p < 0.001), and wound (p = 0.002), urine (p = 0.003) and blood (p = 0.012) samples; blaOXA-48/blaVIM (3.1%) was associated with nephrology (p < 0.001) and urine samples (p < 0.001). Other detected carbapenemases were blaVIM (3.0%), blaIMP (2.7%), blaOXA-48/blaIMP (0.1%) and blaVIM/blaIMP (0.3%). Sequence type (ST)147 (39.7%) represented the most common sequence type identified among K. pneumoniae, along with ST11 (23.0%), ST14 (15.4%), ST258 (10.9%) and ST340 (9.6%) while ST405 comprised 34.5% of Escherichia coli (E. coli) isolates followed by ST131 (21.2%), ST101 (19.7%), ST10 (16.0%) and ST69 (7.4%). Plasmid replicon types IncFII, IncA/C, IncN, IncL/M, IncFIIA and IncFIIK were observed. This is first report describing the carbapenem-resistance burden and emergence of blaKPC-2-ST147, blaNDM-1-ST340 and blaNDM-1-ST14 in K. pneumoniae isolates and blaNDM-1-ST69 and blaNDM-1/blaOXA-48-ST69 in E. coli isolates coharboring extended-spectrum beta-lactamases (ESBLs) from Pakistan.
Collapse
|