1
|
Tao S, Zhang S, Wei K, Maniura-Weber K, Li Z, Ren Q. An Injectable Living Hydrogel with Embedded Probiotics as a Novel Strategy for Combating Multifaceted Pathogen Wound Infections. Adv Healthc Mater 2024; 13:e2400921. [PMID: 38923269 DOI: 10.1002/adhm.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Wound infections pose a significant challenge in healthcare, and traditional antibiotic treatments often result in the development of resistant pathogens. Addressing this gap, ProGel is introduced, a living hydrogel created by entrapping probiotic Lactobacillus plantarum as a therapeutic component within a gelatin matrix. With a double-syringe system, ProGel can be easily mixed and applied, conforming swiftly to any wound shape and forming hydrogel in situ. It also demonstrates robust mechanical and self-healing properties owing to the Schiff-base bonds. ProGel sustains more than 80% viability of the entrapped L. plantarum while restricting their escape from the hydrogel. After a week of storage, more than 70% viability of the entrapped L. plantarum is preserved. Importantly, ProGel exhibits broad-spectrum antimicrobial efficacy against pathogens commonly associated with wound infections, i.e., Pseudomonas aeruginosa (7Log reduction), Staphylococcus aureus (3-7Log reduction), and Candida albicans (40-70% reduction). Moreover, its cytocompatibility is affirmed through coculture with human dermal fibroblasts. The effectiveness of ProGel is further highlighted in more clinically relevant tests on human skin wound models infected with P. aeruginosa and S. aureus, where it successfully prevents the biofilm formation of these pathogens. This study showcases an injectable living hydrogel system for the management of complex wound infections.
Collapse
Affiliation(s)
- Siyuan Tao
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Sixuan Zhang
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Kongchang Wei
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, CH 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Zhihao Li
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, 9014, Switzerland
| |
Collapse
|
2
|
Spaggiari L, Ardizzoni A, Pedretti N, Iseppi R, Sabia C, Russo R, Kenno S, De Seta F, Pericolini E. Bacillus coagulans LMG S-24828 Impairs Candida Virulence and Protects Vaginal Epithelial Cells against Candida Infection In Vitro. Microorganisms 2024; 12:1634. [PMID: 39203476 PMCID: PMC11356316 DOI: 10.3390/microorganisms12081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are living microbes that provide benefits to the host. The growing data on health promotion, following probiotics administration, increased interest among researchers and pharmaceutical companies. Infections of the lower genital tract in females, caused by a wide range of pathogens, represent one of the main areas for the use of probiotics and postbiotics. Vulvovaginal candidiasis (VVC) affects 75% of women of reproductive age at least once during their lifetime, with 5-8% developing the recurrent form (RVVC). The disease is triggered by the overgrowth of Candida on the vaginal mucosa. Here, in order to establish its probiotic potential in the context of VVC, we evaluated the anti-fungal effects of the spore-producing Bacillus coagulans LMG S-24828 against C. albicans and C. parapsilosis as well as its beneficial effects in counteracting Candida vaginal infection in vitro. Our results show that both live B. coagulans and its Cell-Free Supernatant (CFS) exerted antifungal activity against both fungi. Moreover, live B. coagulans reduced hyphal formation, inhibited C. albicans adhesion to vaginal epithelial cells, showed co-aggregation capacity, and exerted a protective effect on vaginal epithelial cells infected with C. albicans. These data suggest that B. coagulans LMG S-24828 may provide benefits in the context of Candida vaginal infections.
Collapse
Affiliation(s)
- Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (A.A.); (S.K.)
| | - Natalia Pedretti
- Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy;
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.I.); (C.S.)
| | - Rosario Russo
- Giellepi S.p.A., Via G. Verdi, 41/Q, 20831 Seregno, Italy;
| | - Samyr Kenno
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (A.A.); (S.K.)
| | - Francesco De Seta
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, University Vita and Salute, 20132 Milan, Italy;
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (A.A.); (S.K.)
| |
Collapse
|
3
|
García-Gamboa R, Perfecto-Avalos Y, Gonzalez-Garcia J, Alvarez-Calderon MJ, Gutierrez-Vilchis A, Garcia-Gonzalez A. In vitro analysis of postbiotic antimicrobial activity against Candida Species in a minimal synthetic model simulating the gut mycobiota in obesity. Sci Rep 2024; 14:16760. [PMID: 39033245 PMCID: PMC11271299 DOI: 10.1038/s41598-024-66806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Gut fungal imbalances, particularly increased Candida spp., are linked to obesity. This study explored the potential of Lactiplantibacillus plantarum cell-free extracts (postbiotics) to modulate the growth of Candida albicans and Candida kefyr, key members of the gut mycobiota. A minimal synthetic gut model was employed to evaluate the effects of Lactiplantibacillus plantarum postbiotics on fungal growth in mono- and mixed cultures. Microreactors were employed for culturing, fungal growth was quantified using CFU counting, and regression analysis was used to evaluate the effects of postbiotics on fungal growth. Postbiotics at a concentration of 12.5% significantly reduced the growth of both Candida species. At 24 h, both C. albicans and C. kefyr in monocultures exhibited a decrease in growth of 0.11 log CFU/mL. In contrast, mixed cultures showed a more pronounced antifungal effect, with C. albicans and C. kefyr reductions of 0.62 log CFU/mL and 0.64 log CFU/mL, respectively. Regression analysis using the Gompertz model supported the antifungal activity of postbiotics and revealed species-specific differences in growth parameters. These findings suggest that L. plantarum postbiotics have the potential to modulate the gut mycobiota by reducing Candida growth, potentially offering a therapeutic approach for combating fungal overgrowth associated with obesity.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| | - Yocanxóchitl Perfecto-Avalos
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Julieta Gonzalez-Garcia
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - María J Alvarez-Calderon
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Abel Gutierrez-Vilchis
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| |
Collapse
|
4
|
Jawanda IK, Soni T, Kumari S, Prabha V. The evolving facets of vaginal microbiota transplantation: reinvigorating the unexplored frontier amid complex challenges. Arch Microbiol 2024; 206:306. [PMID: 38878076 DOI: 10.1007/s00203-024-04024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
In an age of cutting-edge sequencing methods and worldwide endeavors such as The Human Microbiome Project and MetaHIT, the human microbiome stands as a complex and diverse community of microorganisms. A central theme in current scientific inquiry revolves around reinstating a balanced microbial composition, referred to as "eubiosis," as a targeted approach for treating vast array of diseases. Vaginal Microbiota Transplantation (VMT), inspired by the success of fecal microbiota transplantation, emerges as an innovative therapy addressing vaginal dysbacteriosis by transferring the complete microbiota from a healthy donor. Antibiotics, while effective, pose challenges with adverse effects, high recurrence rates, and potential harm to beneficial Lactobacillus strains. Continued antibiotic usage also sparks worries regarding the development of resistant strains. Probiotics, though showing promise, exhibit inconsistency in treating multifactorial diseases, and concerns linger about their suitability for diverse genetic backgrounds. Given the recurrent challenges associated with antibiotic and probiotic treatments, VMT emerges as an imperative alternative, offering a unique and promising avenue for efficiently and reliably managing vaginal dysbiosis among a majority of women. This review critically evaluates findings from both animal and human studies, offering nuanced insights into the efficacy and challenges of VMT. An extensive analysis of clinical trials, provides a current overview of ongoing and completed trials, shedding light on the evolving clinical landscape and therapeutic potential of VMT. Delving into the origins, mechanisms, and optimized protocols of VMT, the review underscores the imperative for sustained research efforts to advance this groundbreaking gynecological therapy.
Collapse
Affiliation(s)
| | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
5
|
Pedro NA, Mira NP. A molecular view on the interference established between vaginal Lactobacilli and pathogenic Candida species: Challenges and opportunities for the development of new therapies. Microbiol Res 2024; 281:127628. [PMID: 38246122 DOI: 10.1016/j.micres.2024.127628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Vaginal infectious diseases caused by viruses and bacteria have been linked to the occurrence of dysbiosis, that is, a reduction in the abundance of the normally dominating vaginal Lactobacillus species. Mucosal infections in the vagina and/or vulva caused by Candida species, usually known as vulvovaginal candidiasis (or VVC), are among the leading causes of diseases in the vaginal tract. The existence of a clear link between the occurrence of dysbiosis and the development of VVC is still unclear, although multiple observations point in that direction. Based on the idea that vaginal health is linked to a microbiota dominated by lactobacilli, several probiotics have been used in management of VVC, either alone or in combination with antifungals, having obtained different degrees of success. In most cases, the undertaken trials resorted to lactobacilli species other than those indigenous to the vaginal tract, although in vitro these vaginal species were shown to reduce growth, viability and virulence of Candida. In this paper we overview the role of lactobacilli and Candida in the vaginal micro- and myco-biomes, while discussing the results obtained in what concerns the establishment of interference mechanisms in vivo and the environmental factors that could determine that. We also overview the molecular mechanisms by which lactobacilli species have been shown to inhibit pathophysiology of Candida, including the description of the genes and pathways determining their ability to thrive in the presence of each other. In a time where concerns are increasing with the emergence of antifungal resistance and the slow pace of discovery of new antifungals, a thorough understanding of the molecular mechanisms underneath the anti-Candida effect prompted by vaginal lactobacilli is of utmost importance to assure a knowledge-based design of what can be a new generation of pharmaceuticals, eventually focusing therapeutic targets other than the usual ones.
Collapse
Affiliation(s)
- Nuno A Pedro
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico - Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico - Department of Bioengineering, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
6
|
Spaggiari L, Pedretti N, Ricchi F, Pinetti D, Campisciano G, De Seta F, Comar M, Kenno S, Ardizzoni A, Pericolini E. An Untargeted Metabolomic Analysis of Lacticaseibacillus ( L.) rhamnosus, Lactobacillus ( L.) acidophilus, Lactiplantibacillus ( L.) plantarum and Limosilactobacillus ( L.) reuteri Reveals an Upregulated Production of Inosine from L. rhamnosus. Microorganisms 2024; 12:662. [PMID: 38674606 PMCID: PMC11051988 DOI: 10.3390/microorganisms12040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Lactic acid bacteria are considered an inexhaustible source of bioactive compounds; indeed, products from their metabolism are known to have immunomodulatory and anti-inflammatory activity. Recently, we demonstrated that Cell-Free Supernatants (CFS) obtained from Lactobacillus (L.) acidophilus, Lactiplantibacillus (L.) plantarum, Lacticaseibacillus (L.) rhamnosus, and Limosilactobacillus (L.) reuteri can impair Candida pathogenic potential in an in vitro model of epithelial vaginal infection. This effect could be ascribed to a direct effect of living lactic acid bacteria on Candida virulence and to the production of metabolites that are able to impair fungal virulence. In the present work, stemming from these data, we deepened our knowledge of CFS from these four lactic acid bacteria by performing a metabolomic analysis to better characterize their composition. By using an untargeted metabolomic approach, we detected consistent differences in the metabolites produced by these four different lactic acid bacteria. Interestingly, L. rhamnosus and L. acidophilus showed the most peculiar metabolic profiles. Specifically, after a hierarchical clustering analysis, L. rhamnosus and L. acidophilus showed specific areas of significantly overexpressed metabolites that strongly differed from the same areas in other lactic acid bacteria. From the overexpressed compounds in these areas, inosine from L. rhamnosus returned with the best identification profile. This molecule has been described as having antioxidant, anti-inflammatory, anti-infective, and neuroprotective properties. The biological significance of its overproduction by L. rhamnosus might be important in its probiotic and/or postbiotic activity.
Collapse
Affiliation(s)
- Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.S.); (F.R.)
| | - Natalia Pedretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.P.); (S.K.); (A.A.)
| | - Francesco Ricchi
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.S.); (F.R.)
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Giuseppina Campisciano
- Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34137 Trieste, Italy; (G.C.); (M.C.)
| | - Francesco De Seta
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, University Vita and Salute, 20132 Milan, Italy;
| | - Manola Comar
- Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, 34137 Trieste, Italy; (G.C.); (M.C.)
- Department of Medical Sciences, University of Trieste, 34129 Trieste, Italy
| | - Samyr Kenno
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.P.); (S.K.); (A.A.)
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.P.); (S.K.); (A.A.)
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.P.); (S.K.); (A.A.)
| |
Collapse
|
7
|
Wang Y, Liu Z, Chen T. Vaginal microbiota: Potential targets for vulvovaginal candidiasis infection. Heliyon 2024; 10:e27239. [PMID: 38463778 PMCID: PMC10923723 DOI: 10.1016/j.heliyon.2024.e27239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is the second most common cause of vaginal infection globally after bacterial vaginosis (BV) and associated with adverse reproductive and obstetric outcomes, including preterm delivery, sexually transmitted infections and pelvic inflammatory disease. Although effective control of VVC is achievable with the use of traditional treatment strategies (i.e., antifungals), the possibility of drug intolerance, treatment failure and recurrence, as well as the appearance of antifungal-resistant Candida species remain critical challenges. Therefore, alternative therapeutic strategies against VVC are urgently required. In recent years, an improved understanding of the dysbiotic vaginal microbiota (VMB) during VVC has prompted the consideration of administering -biotics to restore the balance of the VMB within the context of VVC prevention and treatment. Here, we aim to summarize the current evidence of the anti-Candida effects of probiotics, postbiotics and synbiotics and their potential use as an alternative/complementary therapy against VVC. Additionally, this review discusses advantages and challenges associated with the application of -biotics in VVC to provide guidance for their later use. We also review new developments in VVC therapy, i.e., vaginal microbiota transplantation (VMT) as an emerging live biotherapeutic therapy against VVC and discuss existing shortcomings associated with this nascent field, expecting to stimulate further investigations for introduction of new therapies against VVC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- School of Pharmacy, National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
8
|
Cohen S, Ost KS, Doran KS. Impact of interkingdom microbial interactions in the vaginal tract. PLoS Pathog 2024; 20:e1012018. [PMID: 38457371 PMCID: PMC10923463 DOI: 10.1371/journal.ppat.1012018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Affiliation(s)
- Shirli Cohen
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kyla S. Ost
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
10
|
Tian Z, Zhao M, Sui X, Li X, Qin L, Chen ZJ, Zhao S, Zhao H. Associations between vaginal microbiota and endometrial polypoid lesions in women of reproductive age: a cross-sectional study. Reprod Biomed Online 2024; 48:103602. [PMID: 38101145 DOI: 10.1016/j.rbmo.2023.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 12/17/2023]
Abstract
RESEARCH QUESTION What are the different characteristics of vaginal microbial composition between patients with endometrial polypoid lesions and controls? DESIGN This cohort study compared the pre-operative microbial compositions of vaginal samples in a cohort of 703 women with endometrial polypoid lesions [293 and 410 women diagnosed and not diagnosed with polyps pathologically (polyps group and not-polyps group, respectively] and 703 women in the control group. Bacterial abundance, diversity, differential taxa and microbial network structure were assessed using 16S rRNA gene sequencing. Predictive algorithms were used to determine the functional pathways of vaginal microbiota within the cohort. RESULTS The control group exhibited higher relative abundance of Lactobacillus crispatus in comparison with the polypoid lesions group (P = 0.0427). Beta diversity of vaginal microbiota differed significantly between the groups (P < 0.05). Comparing the polyps group with the not-polyps group, Leptotrichia spp. and Cutibacterium spp. were more abundant in the polyps group, and Fannyhessea spp., Acinetobacter spp. and Achromobacter spp. were more abundant in the not-polyps group. The control group exhibited higher abundance of Bifidobacterium spp., Achromobacter spp. and Escherichia/Shigella spp. (false discovery rate < 0.05). Furthermore, the polyps group and not-polyps group displayed more complex co-occurrence networks compared with the control group. CONCLUSIONS The results of this study provide compelling evidence supporting associations between vaginal microbiota and endometrial polypoid lesions, highlighting the potential relationship between a well-balanced vaginal microbial ecosystem and a healthy intrauterine environment.
Collapse
Affiliation(s)
- Zhaomei Tian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Maoning Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xinlei Sui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xiao Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Lang Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Centre for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| |
Collapse
|
11
|
Selmi H, Rocchetti MT, Capozzi V, Semedo-Lemsaddek T, Fiocco D, Spano G, Abidi F. Lactiplantibacillus plantarum from Unexplored Tunisian Ecological Niches: Antimicrobial Potential, Probiotic and Food Applications. Microorganisms 2023; 11:2679. [PMID: 38004691 PMCID: PMC10673251 DOI: 10.3390/microorganisms11112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The continued exploration of the diversity of lactic acid bacteria in little-studied ecological niches represents a fundamental activity to understand the diffusion and biotechnological significance of this heterogeneous class of prokaryotes. In this study, Lactiplantibacillus plantarum (Lpb. plantarum) strains were isolated from Tunisian vegetable sources, including fermented olive and fermented pepper, and from dead locust intestines, which were subsequently evaluated for their antimicrobial activity against foodborne pathogenic bacteria, including Escherichia coli O157:H7 CECT 4267 and Listeria monocytogenes CECT 4031, as well as against some fungi, including Penicillium expansum, Aspergilus niger, and Botrytis cinerea. In addition, their resistance to oro-gastro-intestinal transit, aggregation capabilities, biofilm production capacity, adhesion to human enterocyte-like cells, and cytotoxicity to colorectal adenocarcinoma cell line were determined. Further, adhesion to tomatoes and the biocontrol potential of this model food matrix were analyzed. It was found that all the strains were able to inhibit the indicator growth, mostly through organic acid production. Furthermore, these strains showed promising probiotic traits, including in vitro tolerance to oro-gastrointestinal conditions, and adhesion to abiotic surfaces and Caco-2 cells. Moreover, all tested Lpb. plantarum strains were able to adhere to tomatoes with similar rates (4.0-6.0 LogCFU/g tomato). The co-culture of LAB strains with pathogens on tomatoes showed that Lpb. plantarum could be a good candidate to control pathogen growth. Nonetheless, further studies are needed to guarantee their use as probiotic strains for biocontrol on food matrices.
Collapse
Affiliation(s)
- Hiba Selmi
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte 7021, Tunisia
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, Via Michele Protano, 71122 Foggia, Italy;
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.T.R.); (D.F.)
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Ferid Abidi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology, University of Carthage, Carthage 1054, Tunisia;
| |
Collapse
|
12
|
Liu C, Ma N, Feng Y, Zhou M, Li H, Zhang X, Ma X. From probiotics to postbiotics: Concepts and applications. ANIMAL RESEARCH AND ONE HEALTH 2023; 1:92-114. [DOI: 10.1002/aro2.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 01/05/2025]
Abstract
AbstractIn recent years, the important role of gut microbiota in promoting animal health and regulating immune function in livestock and poultry has been widely reported. The issue of animal health problems causes significant economic losses each year. Probiotics and postbiotics have been widely developed as additives due to their beneficial effects in balancing host gut microbiota, enhancing intestinal epithelial barrier, regulating immunity, and whole‐body metabolism. Probiotics and postbiotics are composed of complex ingredients, with different components and compositions having different effects, requiring classification for discussing their mechanisms of action. Probiotics and postbiotics have considerable prospects in preventing various diseases in the livestock industry and animal feed and medical applications. This review highlights the application value of probiotics and postbiotics as potential probiotic products, emphasizing their concept, mechanism of action, and application, to improve the productivity of livestock and poultry.
Collapse
Affiliation(s)
- Chunchen Liu
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Huahui Li
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xiujun Zhang
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| |
Collapse
|
13
|
ElFeky DS, Awad AR, Shamseldeen AM, Mowafy HL, Hosny SA. Comparing the therapeutic potentials of Lactobacillus johnsonii vs. Lactobacillus acidophilus against vulvovaginal candidiasis in female rats: an in vivo study. Front Microbiol 2023; 14:1222503. [PMID: 37529322 PMCID: PMC10388188 DOI: 10.3389/fmicb.2023.1222503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is a highly prevalent illness affecting women globally. Lactobacilli, which make up the majority of healthy vaginal microbiota (VMB), serve as a powerful barrier against infections. Probiotic therapy has been recommended for the treatment or prevention of VVC. Aim of work To compare the in vivo therapeutic effects of Lactobacillus johnsonii (B-2178) vs. Lactobacillus acidophilus (LA-5®) on VVC in a rat model, particularly highlighting the immune response of the host vaginal epithelium. Methods In total, 30 female Sprague-Dawley rats were divided into 5 groups; Group 1: no intervention, Group 2: ovariectomy group, while animals in Groups 3-5 were subjected to ovariectomy and an intravaginal inoculation of Candida albicans (C. albicans) to establish VVC. The animals in Groups 4 and 5 received intravaginal lactobacilli treatment with L. acidophilus (LA-5®) and L. johnsonii (B-2178) strains, respectively, for 7 days. C. albicans load was measured in a vaginal lavage 1, 3, and 7 days after the stoppage of the treatment. Histological, morphometric, and immunohistochemical studies of the vaginal tissues were done. IFN-γ, IL-4, and IL-17 were measured in the vaginal tissue. Results Both L. johnsonii and L. acidophilus significantly reduced C. albicans vaginal load (250 ± 77.46 and 133.33 ± 40.82 CFU/mL) compared to the count before treatment in both groups (4,850 ± 1419.51 and 4966.67 ± 852.45 CFU/mL) even after 7 days of stoppage of lactobacilli treatment. A statistically significant reduction of the pro-inflammatory cytokines IL-17 and IFN-γ was reported in both treated groups compared to the infected untreated group. L. johnsonii has a significant effect on the reduction of hyphae formation of C. albicans as well as the nuclear factor kappa B (NF-κB) immunostaining density of vaginal tissue compared to L. acidophilus. Moreover, treatment with L. johnsonii significantly minimized the epithelium damage triggered by C. albicans infection and restored normal vaginal architecture as evidenced by the histologic and morphometric studies when compared to L. acidophilus. Conclusion Through maintaining an immune tolerant state in the vaginal epithelium and ameliorating the undesirable uncontrolled inflammatory response in the vaginal tissue, L. johnsonii (B-2178) has the potential to be utilized alone or in combination with other lactobacilli species in probiotic clinical trials to treat or prevent VVC.
Collapse
Affiliation(s)
- Dalia Saad ElFeky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Alaa Reda Awad
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Asmaa Mohammed Shamseldeen
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Physiology, Faculty of Medicine, October 6 University, Giza, Egypt
| | - Hagar Lotfy Mowafy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara Adel Hosny
- Histology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Hu X, Wang H, Yu B, Yu J, Lu H, Sun J, Sun Y, Zou Y, Luo H, Zeng Z, Liu S, Jiang Y, Wu Z, Ren Z. Oral Fungal Alterations in Patients with COVID-19 and Recovered Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205058. [PMID: 37119437 PMCID: PMC10323652 DOI: 10.1002/advs.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The oral bacteriome, gut bacteriome, and gut mycobiome are associated with coronavirus disease 2019 (COVID-19). However, the oral fungal microbiota in COVID-19 remains unclear. This article aims to characterize the oral mycobiome in COVID-19 and recovered patients. Tongue coating specimens of 71 COVID-19 patients, 36 suspected cases (SCs), 22 recovered COVID-19 patients, 36 SCs who recovered, and 132 controls from Henan are collected and analyzed using internal transcribed spacer sequencing. The richness of oral fungi is increased in COVID-19 versus controls, and beta diversity analysis reveals separate fungal communities for COVID-19 and control. The ratio of Ascomycota and Basidiomycota is higher in COVID-19, and the opportunistic pathogens, including the genera Candida, Saccharomyces, and Simplicillium, are increased in COVID-19. The classifier based on two fungal biomarkers is constructed and can distinguish COVID-19 patients from controls in the training, testing, and independent cohorts. Importantly, the classifier successfully diagnoses SCs with positive specific severe acute respiratory syndrome coronavirus 2 immunoglobulin G antibodies as COVID-19 patients. The correlation between distinct fungi and bacteria in COVID-19 and control groups is depicted. These data suggest that the oral mycobiome may play a role in COVID-19.
Collapse
Affiliation(s)
- Xiaobo Hu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Haiyu Wang
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Bo Yu
- Henan Key Laboratory of Ion‐beam BioengineeringSchool of Agricultural SciencesZhengzhou UniversityZhengzhou455004P. R. China
| | - Jia Yu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Junyi Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Ying Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yawen Zou
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Hong Luo
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Zhaohai Zeng
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Shanshuo Liu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yan Jiang
- Department of Neurologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Zhigang Ren
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| |
Collapse
|
15
|
Spaggiari L, Squartini Ramos GB, Squartini Ramos CA, Ardizzoni A, Pedretti N, Blasi E, De Seta F, Pericolini E. Anti- Candida and Anti-Inflammatory Properties of a Vaginal Gel Formulation: Novel Data Concerning Vaginal Infection and Dysbiosis. Microorganisms 2023; 11:1551. [PMID: 37375053 DOI: 10.3390/microorganisms11061551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Vaginal ecosystem is a unique environment where, in physiological conditions, lactobacilli dominate. However, pathogenic microbial species responsible for vaginitis and vaginosis can also harbor vaginal microbiota. To extend our previously published data, we analyzed here both the anti-Candida and anti-inflammatory properties of the vaginal gel formulation, Respecta® Balance Gel (RBG), commercialized as an adjuvant to treat vaginitis and vaginosis. We evaluated its activity by an in vitro model where a monolayer of A-431 vaginal epithelial cells was infected by Candida albicans in the presence of RBG or the placebo formulation (pRBG). Specifically, we tested the RBG capacity to counteract C. albicans virulence factors and their anti-inflammatory properties. Our results show that, unlike the placebo, RBG reduces C. albicans adhesion, its capacity to form hyphae and C. albicans-induced vaginal cell damage. Interestingly, both RBG and pRBG reduce LPS-induced IL-8 secretion (with RBG being the most effective), demonstrating that also the placebo retains anti-inflammatory properties. From our experimental approach, we highlighted the possible role of farnesol on such effects, but we would like to point out that lactic acid, polydextrose and glycogen too must be relevant in the actual application. In summary, our results show that RBG impairs C. albicans virulence and is able to reduce the inflammation in the vaginal environment, ultimately allowing the establishment of a balanced vaginal ecosystem.
Collapse
Affiliation(s)
- Luca Spaggiari
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gianfranco B Squartini Ramos
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Caterina A Squartini Ramos
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Natalia Pedretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Francesco De Seta
- Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Burlo Garofolo, 34127 Trieste, Italy
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
16
|
Qi Y, Yu L, Tian F, Zhao J, Zhai Q. In vitro models to study human gut-microbiota interactions: Applications, advances, and limitations. Microbiol Res 2023; 270:127336. [PMID: 36871313 DOI: 10.1016/j.micres.2023.127336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
In vitro models of the human gut help compensate for the limitations of animal models in studying the human gut-microbiota interaction and are indispensable in the clarification the mechanism of microbial action or in the high-throughput screening and functional evaluation of probiotics. The development of these models constitutes a rapidly developing field of research. From 2D1 to 3D2 and from simple to complex, several in vitro cell and tissue models have been developed and continuously improved. In this review, we categorized and summarized these models and described their development, applications, advances, and limitations by using specific examples. We also highlighted the best ways to select an appropriate in vitro model, and we also discussed which variables to consider when imitating microbial and human gut epithelial interactions.
Collapse
Affiliation(s)
- Yuli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
17
|
Liu P, Lu Y, Li R, Chen X. Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Front Cell Infect Microbiol 2023; 13:1153894. [PMID: 37077531 PMCID: PMC10106725 DOI: 10.3389/fcimb.2023.1153894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The vaginal microbiome is a distinct component of the human microbiome that is colonized by a wide variety of microorganisms. Lactobacilli are the most frequently identified microorganisms in the healthy human vagina. These Gram-positive bacilli can acidify the vaginal microenvironment, inhibit the proliferation of other pathogenic microorganisms, and promote the maintenance of a eubiotic vaginal microbiome. However, a vaginal flora with a reduced proportion or abundance of lactobacilli is associated with various vaginal infections that have been linked to serious health consequences such as infertility, preterm birth, pelvic inflammatory disease, premature rupture of membranes, and miscarriage. Due to their “Generally Recognized as Safe” classification and critical role in vaginal health, probiotic lactobacilli have been widely used as an alternative or adjunct to traditional antibiotic therapy for the treatment of vaginal infections and restoration of the vaginal microbiome. This review focuses on the significant role of probiotic lactobacilli in the vaginal microenvironment and discusses the use of probiotic lactobacilli in the treatment of female vaginal infections in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Rongguo Li
- *Correspondence: Rongguo Li, ; Xiaodi Chen,
| | | |
Collapse
|
18
|
Zangl I, Beyer R, Gattesco A, Labuda R, Pap IJ, Strauss J, Schüller C. Limosilactobacillus fermentum Limits Candida glabrata Growth by Ergosterol Depletion. Microbiol Spectr 2023; 11:e0332622. [PMID: 36802215 PMCID: PMC10100998 DOI: 10.1128/spectrum.03326-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Candida glabrata is a human-associated opportunistic fungal pathogen. It shares its niche with Lactobacillus spp. in the gastrointestinal and vaginal tract. In fact, Lactobacillus species are thought to competitively prevent Candida overgrowth. We investigated the molecular aspects of this antifungal effect by analyzing the interaction of C. glabrata strains with Limosilactobacillus fermentum. From a collection of clinical C. glabrata isolates, we identified strains with different sensitivities to L. fermentum in coculture. We analyzed the variation of their expression pattern to isolate the specific response to L. fermentum. C. glabrata-L. fermentum coculture induced genes associated with ergosterol biosynthesis, weak acid stress, and drug/chemical stress. L. fermentum coculture depleted C. glabrata ergosterol. The reduction of ergosterol was dependent on the Lactobacillus species, even in coculture with different Candida species. We found a similar ergosterol-depleting effect with other lactobacillus strains (Lactobacillus crispatus and Lactobacillus rhamosus) on Candida albicans, Candida tropicalis, and Candida krusei. The addition of ergosterol improved C. glabrata growth in the coculture. Blocking ergosterol synthesis with fluconazole increased the susceptibility against L. fermentum, which was again mitigated by the addition of ergosterol. In accordance, a C. glabrata Δerg11 mutant, defective in ergosterol biosynthesis, was highly sensitive to L. fermentum. In conclusion, our analysis indicates an unexpected direct function of ergosterol for C. glabrata proliferation in coculture with L. fermentum. IMPORTANCE The yeast Candida glabrata, an opportunistic fungal pathogen, and the bacterium Limosilactobacillus fermentum both inhabit the human gastrointestinal and vaginal tract. Lactobacillus species, belonging to the healthy human microbiome, are thought to prevent C. glabrata infections. We investigated the antifungal effect of Limosilactobacillus fermentum on C. glabrata strains quantitively in vitro. The interaction between C. glabrata and L. fermentum evokes an upregulation of genes required for the synthesis of ergosterol, a sterol constituent of the fungal plasma membrane. We found a dramatic reduction of ergosterol in C. glabrata when it was exposed to L. fermentum. This effect extended to other Candida species and other Lactobacillus species. Furthermore, fungal growth was efficiently suppressed by a combination of L. fermentum and fluconazole, an antifungal drug which inhibits ergosterol synthesis. Thus, fungal ergosterol is a key metabolite for the suppression of C. glabrata by L. fermentum.
Collapse
Affiliation(s)
- Isabella Zangl
- University of Natural Resources and Life Sciences, Vienna, Institute of Microbial Genetics, Tulln, Austria
| | - Reinhard Beyer
- University of Natural Resources and Life Sciences, Vienna, Institute of Microbial Genetics, Tulln, Austria
| | - Arianna Gattesco
- University of Natural Resources and Life Sciences, Vienna, Institute of Microbial Genetics, Tulln, Austria
| | - Roman Labuda
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Bioactive Microbial Metabolites, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Microbial Genetics, Tulln, Austria
| | - Ildiko-Julia Pap
- University Hospital of St. Pölten, Institute for Hygiene and Microbiology, St. Pölten, Austria
| | - Joseph Strauss
- University of Natural Resources and Life Sciences, Vienna, Institute of Microbial Genetics, Tulln, Austria
- Bioactive Microbial Metabolites, University of Natural Resources and Life Sciences, Vienna (BOKU), Institute of Microbial Genetics, Tulln, Austria
| | - Christoph Schüller
- University of Natural Resources and Life Sciences, Vienna, Institute of Microbial Genetics, Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
19
|
Singh DK, Miller CM, Orgel KA, Dave M, Mackay S, Good M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front Pediatr 2023; 10:1107404. [PMID: 36714655 PMCID: PMC9874231 DOI: 10.3389/fped.2022.1107404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating, multifactorial disease mainly affecting the intestine of premature infants. Recent discoveries have significantly enhanced our understanding of risk factors, as well as, cellular and genetic mechanisms of this complex disease. Despite these advancements, no essential, single risk factor, nor the mechanism by which each risk factor affects NEC has been elucidated. Nonetheless, recent research indicates that maternal factors, antibiotic exposure, feeding, hypoxia, and altered gut microbiota pose a threat to the underdeveloped immunity of preterm infants. Here we review predisposing factors, status of unwarranted immune responses, and microbial pathogenesis in NEC based on currently available scientific evidence. We additionally discuss novel techniques and models used to study NEC and how this research translates from the bench to the bedside into potential treatment strategies.
Collapse
Affiliation(s)
- Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelly A. Orgel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mili Dave
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
20
|
Enhancing the antibacterial activity of Lactobacillus reuteri against Escherichia coli by random mutagenesis and delineating its mechanism. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Colombari B, Tagliazucchi D, Odorici A, Pericolini E, Foltran I, Pinetti D, Meto A, Peppoloni S, Blasi E. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14146. [PMID: 36361021 PMCID: PMC9657062 DOI: 10.3390/ijerph192114146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Candida albicans expresses numerous virulence factors that contribute to pathogenesis, including its dimorphic transition and even biofilm formation, through the release of specific quorum sensing molecules, such as the autoinducers (AI) tyrosol and farnesol. In particular, once organized as biofilm, Candida cells can elude conventional antifungal therapies and the host's immune defenses as well. Accordingly, biofilm-associated infections become a major clinical challenge underlining the need of innovative antimicrobial approaches. The aim of this in vitro study was to assess the effects of pomegranate peel extract (PomeGr) on C. albicans growth and biofilm formation; in addition, the release of tyrosol and farnesol was investigated. The phenolic profile of PomeGr was assessed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis before and after exposure to C. albicans. Here, we showed that fungal growth, biofilm formation and AI release were altered by PomeGr treatment. Moreover, the phenolic content of PomeGr was substantially hampered upon exposure to fungal cells; particularly pedunculagin, punicalin, punicalagin, granatin, di-(HHDP-galloyl-hexoside)-pentoside and their isomers as well as ellagic acid-hexoside appeared highly consumed, suggesting their role as bioactive molecules against Candida. Overall, these new insights on the anti-Candida properties of PomeGr and its potential mechanisms of action may represent a relevant step in the design of novel therapeutic approaches against fungal infections.
Collapse
Affiliation(s)
- Bruna Colombari
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2—Pad. Besta, 42100 Reggio Emilia, Italy
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Eva Pericolini
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Ismaela Foltran
- Incos-Cosmeceutica Industriale, Funo di Argelato, 40050 Bologna, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Aida Meto
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
| | - Samuele Peppoloni
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elisabetta Blasi
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
22
|
Molina MA, Andralojc KM, Huynen MA, Leenders WPJ, Melchers WJG. In-depth insights into cervicovaginal microbial communities and hrHPV infections using high-resolution microbiome profiling. NPJ Biofilms Microbiomes 2022; 8:75. [PMID: 36171433 PMCID: PMC9519886 DOI: 10.1038/s41522-022-00336-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
The cervicovaginal microbiome (CVM) correlates with women's cervical health, and variations in its composition are associated with high-risk human papillomavirus (hrHPV) infection outcomes. Cervicovaginal microbes have been grouped into five community state types (CSTs) based on microbial community composition and abundance. However, studying the impact of CSTs in health and disease is challenging because the current sequencing technologies have limited confident discrimination between closely related and yet functionally different bacterial species. Circular probe-based RNA sequencing (ciRNAseq) achieves high-resolution microbiome profiling and therefore provides in-depth and unambiguous knowledge about the composition of the CVM. Based on ciRNAseq profiling of a large cohort of cervical smears (n = 541), we here define subgroups of CSTs I, III, and IV based on intra-CST differences with respect to abundances of Lactobacillus acidophilus (CSTs I-A vs. I-B and CSTs III-A vs. III-B), Lactobacillus iners (CSTs I-A vs. I-B and CSTs III-A vs. III-B), and Megasphaera genomosp type 1 (CSTs IV-A vs. IV-B). Our results further support the existence of subgroups of CST IV-C that are dominant for non-Lactobacillus species and have intermediate microbial diversity. We also show that CST V is associated with uninfected conditions, and CST IV-A associates with hrHPV-induced cervical disease. In conclusion, we characterized new subdivisions of cervicovaginal CSTs, which may further advance our understanding of women's cervical health and hrHPV-related progression to disease.
Collapse
Affiliation(s)
- Mariano A Molina
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Karolina M Andralojc
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, 6525 GA, Nijmegen, The Netherlands
- Predica Diagnostics, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Pérez-Alvarado O, Zepeda-Hernández A, Garcia-Amezquita LE, Requena T, Vinderola G, García-Cayuela T. Role of lactic acid bacteria and yeasts in sourdough fermentation during breadmaking: Evaluation of postbiotic-like components and health benefits. Front Microbiol 2022; 13:969460. [PMID: 36187981 PMCID: PMC9524358 DOI: 10.3389/fmicb.2022.969460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023] Open
Abstract
Sourdough (SD) fermentation is a traditional biotechnological process used to improve the properties of baked goods. Nowadays, SD fermentation is studied for its potential health effects due to the presence of postbiotic-like components, which refer to a group of inanimate microorganisms and/or their components that confer health benefits on the host. Some postbiotic-like components reported in SD are non-viable microorganisms, short-chain fatty acids, bacteriocins, biosurfactants, secreted proteins/peptides, amino acids, flavonoids, exopolysaccharides, and other molecules. Temperature, pH, fermentation time, and the composition of lactic acid bacteria and yeasts in SD can impact the nutritional and sensory properties of bread and the postbiotic-like effect. Many in vivo studies in humans have associated the consumption of SD bread with higher satiety, lower glycemic responses, increased postprandial concentrations of short-chain fatty acids, and improvement in the symptoms of metabolic or gastrointestinal-related diseases. This review highlights the role of bacteria and yeasts used for SD, the formation of postbiotic-like components affected by SD fermentation and the baking process, and the implications of functional SD bread intake for human health. There are few studies characterizing the stability and properties of postbiotic-like components after the baking process. Therefore, further research is necessary to develop SD bread with postbiotic-related health benefits.
Collapse
Affiliation(s)
- Omar Pérez-Alvarado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
| | - Andrea Zepeda-Hernández
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
| | | | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Institute of Food Science Research, CIAL (CSIC), Madrid, Spain
| | - Gabriel Vinderola
- Faculty of Chemical Engineering, Instituto de Lactología Industrial (CONICET-UNL), National University of Litoral, Santa Fe, Argentina
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Zapopan, Jalisco, Mexico
- *Correspondence: Tomás García-Cayuela,
| |
Collapse
|