1
|
Ma Z, Wei L, Wang Z, Liu Y, Li N, Jiao J, Zuo Y, Xia X, Cai X, Meng Q, Qiao J. sRNA STnc3020 contributes to the virulence of Salmonella Typhimurium may via modulating the gene expression of prgJ of T3SS needle complex. Int J Biol Macromol 2024:139065. [PMID: 39725119 DOI: 10.1016/j.ijbiomac.2024.139065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
As important post-transcriptional regulators of gene expression, sRNAs play important modulatory roles in the environmental adaptation and virulence of bacteria. To investigate the regulatory role of sRNA STnc3020 in the virulence of Salmonella Typhimurium (S. typhimurium). This study analyzed the impacts of STnc3020 deletion on adherence, invasion, intracellular survival, macrophage apoptosis, and pathogenicity of S. typhimurium in mice. Furthermore, potential regulatory target genes of STnc3020 were identified and its regulatory mechanism was validated. The results showed that at the cellular level, the deletion of STnc3020 significantly reduced the adhesion ability of S. typhimurium to intestinal epithelial cells (P < 0.01), as well as its proliferation and apoptosis-inducing abilities within macrophages (P < 0.01). Meanwhile, animal experiment results indicated that the deletion of STnc3020 significantly reduced the colonization rate of S. typhimurium in the liver and cecum of mice (P < 0.01), and increased the median lethal dose (4.28 × 105) in mice. Regulatory mechanism research results showed that STnc3020 can interact with the target gene prgJ of the Type III secretion system, and the protein level of PrgJ significantly decreased after the deletion of STnc3020 (P < 0.01).These findings offer new insights into sRNA-mediated virulence control and may aid in developing new vaccines and drugs for S. typhimurium.
Collapse
Affiliation(s)
- Zhongmei Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lixiang Wei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhanpeng Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yucheng Liu
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang 832000, China
| | - Nengxiu Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Jiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yufei Zuo
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xuepeng Cai
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Qingling Meng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
2
|
Khaledi M, Khatami M, Hemmati J, Bakhti S, Hoseini SA, Ghahramanpour H. Role of Small Non-Coding RNA in Gram-Negative Bacteria: New Insights and Comprehensive Review of Mechanisms, Functions, and Potential Applications. Mol Biotechnol 2024:10.1007/s12033-024-01248-w. [PMID: 39153013 DOI: 10.1007/s12033-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
Small non-coding RNAs (sRNAs) are a key part of gene expression regulation in bacteria. Many physiologic activities like adaptation to environmental stresses, antibiotic resistance, quorum sensing, and modulation of the host immune response are regulated directly or indirectly by sRNAs in Gram-negative bacteria. Therefore, sRNAs can be considered as potentially useful therapeutic options. They have opened promising perspectives in the field of diagnosis of pathogens and treatment of infections caused by antibiotic-resistant organisms. Identification of sRNAs can be executed by sequence and expression-based methods. Despite the valuable progress in the last two decades, and discovery of new sRNAs, their exact role in biological pathways especially in co-operation with other biomolecules involved in gene expression regulation such as RNA-binding proteins (RBPs), riboswitches, and other sRNAs needs further investigation. Although the numerous RNA databases are available, including 59 databases used by RNAcentral, there remains a significant gap in the absence of a comprehensive and professional database that categorizes experimentally validated sRNAs in Gram-negative pathogens. Here, we review the present knowledge about most recent and important sRNAs and their regulatory mechanism, strengths and weaknesses of current methods of sRNAs identification. Also, we try to demonstrate the potential applications and new insights of sRNAs for future studies.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jaber Hemmati
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Lyu C, Hu H, Cai L, He S, Xu X, Zhou G, Wang H. A trans-acting sRNA SaaS targeting hilD, cheA and csgA to inhibit biofilm formation of S. Enteritidis. J Adv Res 2024:S2090-1232(24)00232-7. [PMID: 38852803 DOI: 10.1016/j.jare.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. OBJECTIVES This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. METHODS Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. RESULTS SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. CONCLUSION SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway.
Collapse
Affiliation(s)
- Chongyang Lyu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haijing Hu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuwen He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
4
|
Geyi D, Thomas P, Prakasan L, Issac YM, Singh A, Nair SS, Singh M, Inbaraj S, Kumar S, Mariappan AK, Abhishek, Chaturvedi VK, Dandapat P. Salmonella enterica serovars linked with poultry in India: antibiotic resistance profiles and carriage of virulence genes. Braz J Microbiol 2024; 55:969-979. [PMID: 38233640 PMCID: PMC10920579 DOI: 10.1007/s42770-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/07/2024] [Indexed: 01/19/2024] Open
Abstract
Salmonella is an important poultry pathogen with zoonotic potential. Being a foodborne pathogen, Salmonella-contaminated poultry products can act as the major source of infection in humans. In India, limited studies have addressed the diversity of Salmonella strains of poultry origin. This study represented 26 strains belonging to Salmonella serovars Typhimurium, Infantis, Virchow, Kentucky, and Agona. The strains were tested for resistance to 14 different antimicrobial agents using the Kirby-Bauer disk-diffusion assay. The presence of the invA, hilA, agfA, lpfA, sopE, and spvC virulence genes was assessed by polymerase chain reaction (PCR), and the genetic diversity was assessed by Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR). The highest resistance to tetracycline (n = 17; 65.38%) followed by nalidixic acid (n = 16; 61.53%) was detected among the strains. Among the strains (n = 17) phenotypically resistant to tetracycline, 94% (n = 16) were also positive for the tetA gene. Based on the presence of virulence genes, the strains were characterized into three virulence profiles (PI, P2, and P3). Among the investigated virulence genes, invA, hilA, agfA, and lpfA were present in all strains. The sopE gene was mostly associated with serovars Virchow (n = 3; 100%) and Typhimurium (n = 8; 80%), whereas spvC gene was exclusive for two Typhimurium strains that lacked sopE gene. ERIC-PCR profiling indicated clusters correlating their serovar, geographical, and farm origins. These results demonstrate that Salmonella isolates with a wide genetic range, antibiotic resistance, and virulence characteristics can colonize poultry. The presence of such strains is crucial for both food safety and public health.
Collapse
Affiliation(s)
- Dengam Geyi
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Prasad Thomas
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Lakshmi Prakasan
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Yancy M Issac
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Arvinderpal Singh
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, Jammu, 181102, India
| | - Sonu S Nair
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Maninder Singh
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Sophia Inbaraj
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Suman Kumar
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Asok K Mariappan
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Abhishek
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Vinod K Chaturvedi
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Premanshu Dandapat
- ICAR- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
5
|
Du Y, Wang Y, Geng J, Long J, Yang H, Duan G, Chen S. Molecular mechanism of Hfq-dependent sRNA1039 and sRNA1600 regulating antibiotic resistance and virulence in Shigella sonnei. Int J Antimicrob Agents 2024; 63:107070. [PMID: 38141834 DOI: 10.1016/j.ijantimicag.2023.107070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Bacillary dysentery caused by Shigella spp. is a significant concern for human health. Small non-coding RNA (sRNA) plays a crucial role in regulating antibiotic resistance and virulence in Shigella spp. However, the specific mechanisms behind this phenomenon are still not fully understood. This study discovered two sRNAs (sRNA1039 and sRNA1600) that may be involved in bacterial resistance and virulence. By constructing deletion mutants (WT/ΔSR1039 and WT/ΔSR1600), this study found that the WT/ΔSR1039 mutants caused a two-fold increase in sensitivity to ampicillin, gentamicin and cefuroxime, and the WT/ΔSR1600 mutants caused a two-fold increase in sensitivity to cefuroxime. Furthermore, the WT/ΔSR1600 mutants caused a decrease in the adhesion and invasion of bacteria to HeLa cells (P<0.01), and changed the oxidative stress level of bacteria to reduce their survival rate (P<0.001). Subsequently, this study explored the molecular mechanisms by which sRNA1039 and sRNA1600 regulate antibiotic resistance and virulence. The deletion of sRNA1039 accelerated the degradation of target gene cfa mRNA and reduced its expression, thereby regulating the expression of pore protein gene ompD indirectly and negatively to increase bacterial sensitivity to ampicillin, gentamicin and cefuroxime. The inactivation of sRNA1600 reduced the formation of persister cells to reduce resistance to cefuroxime, and reduced the expression of type-III-secretion-system-related genes to reduce bacterial virulence by reducing the expression of target gene tomB. These results provide new insights into Hfq-sRNA-mRNA regulation of the resistance and virulence network of Shigella sonnei, which could potentially promote the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ya Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Lee SM, Le HT, Taizhanova A, Nong LK, Park JY, Lee EJ, Palsson BO, Kim D. Experimental promoter identification of a foodborne pathogen Salmonella enterica subsp. enterica serovar Typhimurium with near single base-pair resolution. Front Microbiol 2024; 14:1271121. [PMID: 38239730 PMCID: PMC10794520 DOI: 10.3389/fmicb.2023.1271121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common foodborne pathogen which is frequently used as the reference strain for Salmonella. Investigating the sigma factor network and protomers is crucial to understand the genomic and transcriptomic properties of the bacterium. Its promoters were identified using various methods such as dRNA-seq, ChIP-chip, or ChIP-Seq. However, validation using ChIP-exo, which exhibits higher-resolution performance compared to conventional ChIP, has not been conducted to date. In this study, using the representative strain S. Typhimurium LT2 (LT2), the ChIP-exo experiment was conducted to accurately determine the binding sites of catalytic RNA polymerase subunit RpoB and major sigma factors (RpoD, RpoN, RpoS, and RpoE) during exponential phase. Integrated with the results of RNA-Seq, promoters and sigmulons for the sigma factors and their association with RpoB have been discovered. Notably, the overlapping regions among binding sites of each alternative sigma factor were found. Furthermore, comparative analysis with Escherichia coli str. K-12 substr. MG1655 (MG1655) revealed conserved binding sites of RpoD and RpoN across different species. In the case of small RNAs (sRNAs), 50 sRNAs observed their expression during the exponential growth of LT2. Collectively, the integration of ChIP-exo and RNA-Seq enables genome-scale promoter mapping with high resolution and facilitates the characterization of binding events of alternative sigma factors, enabling a comprehensive understanding of the bacterial sigma factor network and condition-specific active promoters.
Collapse
Affiliation(s)
- Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hoa Thi Le
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Assiya Taizhanova
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eun-Jin Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|