1
|
Li W, Liu N, Chen M, Liu D, Liu S. Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189262. [PMID: 39827973 DOI: 10.1016/j.bbcan.2025.189262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a significant clinical challenge due to its aggressive behavior and poor prognosis, making the development of novel therapeutics with enhanced efficacy and minimal side effects critical. Metformin, a widely used antidiabetic agent, has recently emerged as a potential adjunctive therapy for HNSCC, exhibiting both direct anti-tumor and immunomodulatory effects. This review comprehensively explores the multifaceted role of metformin in shaping the tumor immune microenvironment within HNSCC. We emphasize its pivotal role in modulating immune cell populations and its potential for synergistic action with immunotherapeutic strategies. Furthermore, we address the current challenges associated with optimizing dosing regimens, identifying predictive biomarkers, and integrating metformin with immunotherapy. By dissecting these aspects, this review aims to pave the way for the development of personalized HNSCC treatment strategies that fully exploit the therapeutic potential of metformin.
Collapse
Affiliation(s)
- Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang 110002, Liaoning, China.
| |
Collapse
|
2
|
Crispino A, Varricchio S, Esposito A, Marfella A, Cerbone D, Perna A, Petronio Petronio G, Staibano S, Merolla F, Ilardi G. The oral microbiome and its role in oral squamous cell carcinoma: a systematic review of microbial alterations and potential biomarkers. Pathologica 2024; 116:338-357. [PMID: 39748720 DOI: 10.32074/1591-951x-n867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Despite advances in diagnosis and treatment, the incidence of OSCC is increasing, and the mortality rate remains high. This systematic review aims to examine the potential association between the composition of the oral microbiota and OSCC. Materials and methods This study's protocol was developed according to the PRISMA guidelines. Several search engines, including Medline-PubMed, Scopus (via Elsevier), and Google Scholar, were used to identify original studies that analyzed differences in the oral microbiome between OSCC patients and controls. Twenty-seven studies were identified that reported significant differences in microbial abundance between OSCC and controls. Results The systematic review highlights a complex relationship between the oral microbiome and the pathogenesis of OSCC. Significant changes in the microbial composition were identified, with a predominance of phyla such as Bacteroidetes and Fusobacteria, which are associated with inflammatory mechanisms facilitating tumor progression. A remarkable variability in microbial profiles emerged based on the different stages of the disease and the types of samples analyzed, demonstrating the complexity of the oral microbial ecosystem. Conclusion Although alterations in the oral cavity microbiome composition are evident in patients with OSCC, identifying a specific pattern remains challenging. However, the integration of advanced analytical techniques, such as artificial intelligence, could overcome this problem, allowing the identification of crucial biomarkers and improving the understanding of the role of the microbiome in carcinogenesis. This approach could transform microbiome analysis into a useful tool for screening and monitoring patients with OSCC.
Collapse
Affiliation(s)
- Angela Crispino
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Aurora Esposito
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandra Marfella
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Dora Cerbone
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Ma Y, Chen T, Sun T, Dilimulati D, Xiao Y. The oncomicrobiome: New insights into microorganisms in cancer. Microb Pathog 2024; 197:107091. [PMID: 39481695 DOI: 10.1016/j.micpath.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The discoveries of the oncomicrobiome (intratumoral microbiome) and oncomicrobiota (intratumoral microbiota) represent significant advances in tumor research and have rapidly become of key interest to the field. Within tumors, microorganisms such as bacteria, fungi, viruses, and archaea form the oncomicrobiota and are primarily found within tumor cells, immunocytes, and the intercellular matrix. The oncomicrobiome exhibits marked heterogeneity and is associated with tumor initiation, progression, metastasis, and treatment response. Interactions between the oncomicrobiome and the immune system can modulate host antitumor immunity, influencing the efficacy of immunotherapies. Oncomicrobiome research also faces numerous challenges, including overcoming methodological issues such as low target abundance, susceptibility to contamination, and biases in sample handling and analysis methods across different studies. Furthermore, studies of the oncomicrobiome may be confounded by baseline differences in microbiomes among populations driven by both environmental and genetic factors. Most studies to date have revealed associations between the oncomicrobiome and tumors, but very few have established mechanistic links between the two. This review introduces the relevant concepts, detection methods, sources, and characteristics of the oncomicrobiome. We then describe the composition of the oncomicrobiome in common tumors and its role in shaping the tumor microenvironment. We also discuss the current problems and challenges to be overcome in this rapidly progressing field.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Sun
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Peking Union Medical College & Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Harmak Z, Kone AS, Ghouzlani A, Ghazi B, Badou A. Beyond Tumor Borders: Intratumoral Microbiome Effects on Tumor Behavior and Therapeutic Responses. Immune Netw 2024; 24:e40. [PMID: 39801738 PMCID: PMC11711125 DOI: 10.4110/in.2024.24.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
The human body contains a diverse array of microorganisms, which exert a significant impact on various physiological processes, including immunity, and can significantly influence susceptibility to various diseases such as cancer. Recent advancements in metagenomic sequencing have uncovered the role of intratumoral microbiome, which covertly altered the development of cancer, the growth of tumors, and the response to existing treatments through multiple mechanisms. These mechanisms involve mainly DNA damage induction, oncogenic signaling pathway activation, and the host's immune response modulation. To explore novel therapeutic options and effectively target and regulate the intratumoral microbiome, a comprehensive understanding of these processes is indispensable. Here, we will explore various potential actions of the intratumoral microbiome concerning the initiation and progression of tumors. We will examine its impact on responses to chemotherapy, radiotherapy, and immunotherapy. Additionally, we will discuss the current state of knowledge regarding the use of genetically modified bacteria as a promising treatment option for cancer.
Collapse
Affiliation(s)
- Zakia Harmak
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Abdou-Samad Kone
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| | - Bouchra Ghazi
- Immunopathology-Immunomonitoring-Immunotherapy Laboratory, Faculty of Medicine, Mohammed IV University of Sciences and Health, Casablanca 82403, Morocco
- IVF Laboratory, Department of Reproductive Medicine, Mohammed VI International University Hospital, Bouskoura 27182, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco
| |
Collapse
|
5
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
7
|
Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med 2024; 22:837. [PMID: 39261861 PMCID: PMC11391643 DOI: 10.1186/s12967-024-05640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade. Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile, has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identified as the sources of intratumoral microbial "dark matter," including direct invasion of mucosal barriers, spreading from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly heterogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations, epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early cancer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for intervention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding pertaining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable challenges as a target for personalized cancer management strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| |
Collapse
|
8
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
9
|
Luo Z, Lv S, Lou F, Yan L, Xu J, Kang N, Dong Y, Jin X. Roles of intralesional bacteria in the initiation and progression of oral squamous cell carcinoma. Cancer Med 2024; 13:e70209. [PMID: 39300932 PMCID: PMC11413416 DOI: 10.1002/cam4.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the predominant form of head and neck cancer, often diagnosed at late stages, resulting in a poor prognosis. Recent studies indicate a potential association between OSCC and microbial presence. Microorganisms have been identified in various tumors and lesions, including OSCC and oral potentially malignant disorders (OPMDs). Intralesional microbiota are considered important components of the tumor microenvironment (TME) and may contribute to carcinogenesis. METHODS Sources were collected through thorough searches of databases PubMed and Embase. The review focused on microbial characteristics, potential origins, and their impact on cancer progression. RESULTS Bacteria display varying abundance and diversity throughout the stages of OSCC and OPMDs. Intraleisional bacteria may have diverse sources, including not only oral plaque and saliva but also potentially the gut. Intralesional bacteria have both pro-carcinogenic and anti-carcinogenic effects, affecting processes like cell proliferation, invasion, and immune response. CONCLUSIONS Intralesional microbiota are crucial in OSCC and OPMDs, influencing both disease progression and treatments. Despite their significance, challenges like inconsistent sampling and microbial identification remain. Future research is required to fully understand their role and improve clinical applications.
Collapse
Affiliation(s)
- Zhuoyan Luo
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Shiping Lv
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Fangzhi Lou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Li Yan
- College of Medical InformaticsChongqing Medical UniversityChongqingChina
| | - Jingyi Xu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Ning Kang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Yunmei Dong
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| | - Xin Jin
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral DiseasesChongqingChina
| |
Collapse
|
10
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
11
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|
12
|
Wang J, Gao B. Mechanisms and Potential Clinical Implications of Oral Microbiome in Oral Squamous Cell Carcinoma. Curr Oncol 2023; 31:168-182. [PMID: 38248096 PMCID: PMC10814288 DOI: 10.3390/curroncol31010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Microorganisms in the oral cavity are abundant in the human body. At present, more than 700 species of oral microorganisms have been identified. Recently, a lot of literature has indicated that the oral microbiota plays an important role in the occurrence, development, and prognosis of oral squamous cell carcinoma (OSCC) through various mechanisms. And researchers are now trying to utilize oral microbiota in cancer diagnosis and treatment. However, few articles systematically summarize the effects of oral microbes in the diagnosis, treatment, and disease outcomes of oral cancer. Herein, we made a summary of the microbial changes at cancerous sites and placed more emphasis on the mechanisms by which the oral microbiome promotes cancerization. Moreover, we aimed to find out the clinical value of the oral microbiome in OSCC.
Collapse
Affiliation(s)
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
13
|
Yamamoto Y, Kamiya T, Yano M, Huyen VT, Oishi M, Nishio M, Suzuki A, Sunami K, Ohtani N. Oral Microbial Profile Analysis in Patients with Oral and Pharyngeal Cancer Reveals That Tumoral Fusobacterium nucleatum Promotes Oral Cancer Progression by Activating YAP. Microorganisms 2023; 11:2957. [PMID: 38138101 PMCID: PMC10746018 DOI: 10.3390/microorganisms11122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The incidence of oral cancer has recently been increasing worldwide, particularly among young individuals and women. The primary risk factors for head and neck cancers, including oral and pharyngeal cancers, are smoking, alcohol consumption, poor oral hygiene, and repeated exposure to mechanical stimuli. However, approximately one-third of the patients with oral and pharyngeal cancers are neither smokers nor drinkers, which points to the existence of other mechanisms. Recently, human microbes have been linked to various diseases, including cancer. Oral pathogens, especially periodontal pathobionts, are reported to play a role in the development of colon and other types of cancer. In this study, we employed a series of bioinformatics analyses to pinpoint Fusobacterium nucleatum as the predominant oral bacterial species in oral and pharyngeal cancer tissue samples. We successfully isolated Fn. polymorphum from the saliva of patients with oral cancer and demonstrated that Fn. polymorphum indeed promoted oral squamous cell carcinoma development by activating YAP in a mouse tongue cancer model. Our research offers scientific evidence for the role of the oral microbiome in oral cancer progression and provides insights that would help in devising preventative strategies against oral cancer, potentially by altering oral bacterial profiles.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Tomonori Kamiya
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Megumu Yano
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Vu Thuong Huyen
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Masahiro Oishi
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kishiko Sunami
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Department of Otolaryngology and Head & Neck Surgery, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| |
Collapse
|