1
|
Fenton LK, Marshall JR, Schuerger AC, Smith JK, Kelley KL. Aeolian Biodispersal of Terrestrial Microorganisms on Mars Through Saltation Bombardment of Spacecraft. ASTROBIOLOGY 2024. [PMID: 39453416 DOI: 10.1089/ast.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A major unknown in the field of planetary protection is the degree to which natural atmospheric processes remove terrestrial microorganisms from robotic and crewed spacecraft that could potentially contaminate Mars (i.e., forward contamination). We present experiments in which we measured the removal rate of Bacillus subtilis HA101 spores from aluminum surfaces under the bombardment of naturally rounded sand grains. To simulate grain impacts, we constructed a pneumatic sand-feed system and gun to accelerate grains to a desired speed, with independent control of impacting grain mass, flux, and angle. Spore counts of the resulting bombarded surfaces when using scanning electron microscopy indicate that although spores directly impacted by sand grains would likely be killed, those immediately adjacent to grain impacts might be released into the environment intact. The experiments demonstrate a linear relationship between the fractional dislodgement rate of spores and grain impact speed, which can be used to estimate input to microbial transport models (e.g., using numerical models of saltation). Even the slowest grain impacts (∼2.7 m/s) dislodged spores. Such slow events may be common and widespread on Mars, which suggests that microbial dislodgement by slow saltation near the surface is largely unavoidable.
Collapse
Affiliation(s)
| | | | - Andrew C Schuerger
- Dept. of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - J Ken Smith
- Arizona State University, Moffett Field, California, USA
| | - Karen L Kelley
- Electron Microscopy Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Cúñez EA, Franklin EM. Detection and tracking of barchan dunes using artificial intelligence. Sci Rep 2024; 14:18381. [PMID: 39112482 PMCID: PMC11306226 DOI: 10.1038/s41598-024-67893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Barchans are crescent-shape dunes ubiquitous on Earth and other celestial bodies, which are organized in barchan fields where they interact with each other. Over the last decades, satellite images have been largely employed to detect barchans on Earth and on the surface of Mars, with AI (Artificial Intelligence) becoming an important tool for monitoring those bedforms. However, automatic detection reported in previous works is limited to isolated dunes and does not identify successfully groups of interacting barchans. In this paper, we inquire into the automatic detection and tracking of barchans by carrying out experiments and exploring the acquired images using AI. After training a neural network with images from controlled experiments where complex interactions took place between dunes, we did the same for satellite images from Earth and Mars. We show, for the first time, that a neural network trained properly can identify and track barchans interacting with each other in different environments, using different image types (contrasts, colors, points of view, resolutions, etc.), with confidence scores (accuracy) above 70%. Our results represent a step further for automatically monitoring barchans, with important applications for human activities on Earth, Mars and other celestial bodies.
Collapse
Affiliation(s)
- Esteban A Cúñez
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-860, Brazil
| | - Erick M Franklin
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-860, Brazil.
| |
Collapse
|
3
|
Gary‐Bicas CE, Michaels TI, Rogers AD, Fenton LK, Warner NH, Cowart AC. Investigating the Role of Amazonian Mesoscale Wind Patterns and Strength on the Spatial Distribution of Martian Bedrock Exposures. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007496. [PMID: 37035522 PMCID: PMC10078484 DOI: 10.1029/2022je007496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 11/06/2022] [Indexed: 06/19/2023]
Abstract
The Martian highlands contain Noachian-aged areally-extensive (>225 km2) bedrock exposures that have been mapped using thermal and visible imaging datasets. Given their age, crater density and impact gardening should have led to the formation of decameter scale layers of regolith that would overlie and bury these outcrops if composed of competent materials like basaltic lavas. However, many of these regions lack thick regolith layers and show clear exposures of bedrock materials with elevated thermal inertia values compared to the global average. Hypothesized reasons for the lack of regolith include: (a) relatively weaker material properties than lavas, where friable materials are comminuted and deflated during wind erosion, (b) long-term protection from regolith development through burial and later exhumation through one or more surface processes, and (c) spatially concentrated aeolian erosion and wind energetics on well-lithified basaltic substrates. To test the third hypothesis, we used the Mars Regional Atmospheric Modeling System to calculate wind erosive strength at 10 regions throughout the Martian highlands and compared it to their thermophysical properties by using thermal infrared data derived from the Thermal Emission Spectrometer to understand the effect that Amazonian mesoscale wind patterns may have on the exposure of bedrock. We also investigated the effect of planet obliquity, Ls of perihelion, and atmospheric mean pressure on wind erosion potential. We found no evidence for increased aeolian activity over bedrock-containing regions relative to surrounding terrains, including at the mafic floor unit at Jezero crater (Máaz formation), supporting the first or second hypotheses for these regions.
Collapse
Affiliation(s)
| | | | - A. D. Rogers
- Department of GeosciencesStony Brook UniversityStony BrookNYUSA
| | - L. K. Fenton
- Carl Sagan CenterSETI InstituteMountain ViewCAUSA
| | - N. H. Warner
- Department of Geological SciencesState University of New York at GeneseoGeneseoNYUSA
| | - A. C. Cowart
- Department of GeosciencesStony Brook UniversityStony BrookNYUSA
| |
Collapse
|
4
|
Abstract
Many discoveries of active surface processes on Mars have been made due to the availability of repeat high-resolution images from the High Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter. HiRISE stereo images are used to make digital terrain models (DTMs) and orthorectified images (orthoimages). HiRISE DTMs and orthoimage time series have been crucial for advancing the study of active processes such as recurring slope lineae, dune migration, gully activity, and polar processes. We describe the process of making HiRISE DTMs, orthoimage time series, DTM mosaics, and the difference of DTMs, specifically using the ISIS/SOCET Set workflow. HiRISE DTMs are produced at a 1 and 2 m ground sample distance, with a corresponding estimated vertical precision of tens of cm and ∼1 m, respectively. To date, more than 6000 stereo pairs have been acquired by HiRISE and, of these, more than 800 DTMs and 2700 orthoimages have been produced and made available to the public via the Planetary Data System. The intended audiences of this paper are producers, as well as users, of HiRISE DTMs and orthoimages. We discuss the factors that determine the effective resolution, as well as the quality, precision, and accuracy of HiRISE DTMs, and provide examples of their use in time series analyses of active surface processes on Mars.
Collapse
|
5
|
Chojnacki M, Vaz DA, Silvestro S, Silva DCA. Widespread Megaripple Activity Across the North Polar Ergs of Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006970. [PMID: 35096495 PMCID: PMC8793034 DOI: 10.1029/2021je006970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The most expansive dune fields on Mars surround the northern polar cap where various aeolian bedform classes are modified by wind and ice. The morphology and dynamics of these ripples, intermediate-scale bedforms (termed megaripples and Transverse Aeolian Ridges [TARs]), and sand dunes reflect information regarding regional boundary conditions. We found that populations of polar megaripples and larger TARs are distinct in terms of their morphology, spatial distribution, and mobility. Whereas regionally restricted TARs appeared degraded and static in long-baseline observations, polar megaripples were not only widespread but migrating at relatively high rates (0.13 ± 0.03 m/Earth year) and possibly more active than other regions on Mars. This high level of activity is somewhat surprising since there is limited seasonality for aeolian transport due to surficial frost and ice during the latter half of the martian year. A comprehensive analysis of an Olympia Cavi dune field estimated that the advancement of megaripples, ripples, and dunes avalanches accounted for ~1%, ~10%, and ~100%, respectively, of the total aeolian system's sand fluxes. This included dark-toned ripples that migrated the average equivalent of 9.6 ± 6 m/yr over just 22 days in northern summer-unprecedented rates for Mars. While bedform transport rates are some of the highest yet reported on Mars, the sand flux contribution between the different bedforms does not substantially vary from equatorial sites with lower rates. Seasonal off-cap sublimation winds and summer-time polar storms are attributed as the cause for the elevated activity, rather than cryospheric processes.
Collapse
Affiliation(s)
| | - David A Vaz
- Centre for Earth and Space Research of the University of Coimbra, Observatório Geofísico e Astronómico da Universidade de Coimbra, Coimbra, Portugal
| | - Simone Silvestro
- SETI Institute, Carl Sagan Center, Mountain View, CA, USA
- INAF Osservatorio Astronomico di Capodimonte, Napoli, Italia
| | - David C A Silva
- Centre for Earth and Space Research of the University of Coimbra, Observatório Geofísico e Astronómico da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Dundas CM, Becerra P, Byrne S, Chojnacki M, Daubar IJ, Diniega S, Hansen CJ, Herkenhoff KE, Landis ME, McEwen AS, Portyankina G, Valantinas A. Active Mars: A Dynamic World. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006876. [PMID: 35845553 PMCID: PMC9285055 DOI: 10.1029/2021je006876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/15/2023]
Abstract
Mars exhibits diverse surface changes at all latitudes and all seasons. Active processes include impact cratering, aeolian sand and dust transport, a variety of slope processes, changes in polar ices, and diverse effects of seasonal CO2 frost. The extent of surface change has been surprising and indicates that the present climate is capable of reshaping the surface. Activity has important implications for the Amazonian history of Mars: understanding processes is a necessary step before we can understand their implications and variations over time.
Collapse
Affiliation(s)
- Colin M. Dundas
- U.S. Geological SurveyAstrogeology Science CenterFlagstaffAZUSA
| | | | - Shane Byrne
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
| | | | - Ingrid J. Daubar
- Department of Earth, Environmental, and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - Serina Diniega
- Jet Propulsion Laboratory/California Institute of TechnologyPasadenaCAUSA
| | | | | | - Margaret E. Landis
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | | - Ganna Portyankina
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | |
Collapse
|
7
|
Abstract
Transverse aeolian ridges (TARs) are poorly understood relict aeolian Martian surface features. Processes that create TARs are not well-constrained, and understanding their formation is complicated since they appear to share some features of ripples, megaripples, and dunes. While some evidence of multi-stage TAR formation has been documented in Nirgal Vallis, here we present additional evidence for this process at nine locations on Mars using cratering superposition between different ridge morphologies. Most occurrences of multistage evolution will not preserve the precise series of cratering and formation events documented here, which potentially means that this formative process may have been more common than even these new widespread observations suggest. This formative process can help determine the relative similarity of TARs to ripples, megaripples and dunes. Based on our observations, we conclude that primary TAR forms are most like megaripples, and that subsequent ridges formed like aqueous ripple spurs.
Collapse
|
8
|
Silvestro S, Chojnacki M, Vaz DA, Cardinale M, Yizhaq H, Esposito F. Megaripple Migration on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2020JE006446. [PMID: 33133993 PMCID: PMC7583471 DOI: 10.1029/2020je006446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Aeolian megaripples, with 5- to 50-m spacing, are abundant on the surface of Mars. These features were repeatedly targeted by high-resolution orbital images, but they have never been observed to move. Thus, aeolian megaripples (especially the bright-toned ones often referred as Transverse Aeolian Ridges-TARs) have been interpreted as relict features of a past climate. In this report, we show evidence for the migration of bright-toned megaripples spaced 1 to 35 m (5 m on average) in two equatorial areas on Mars indicating that megaripples and small TARs can be active today. The moving megaripples display sand fluxes that are 2 orders of magnitudes lower than the surrounding dunes on average and, unlike similar bedforms on Earth, can migrate obliquely and longitudinally. In addition, the active megaripples in the two study areas of Syrtis Major and Mawrth Vallis show very similar flux distributions, echoing the similarities between dune crest fluxes in the two study areas and suggesting the existence of a relationship between dune and megaripple fluxes that can be explored elsewhere. Active megaripples, together with high-sand flux dunes, represent a key indicator of strong winds at the surface of Mars. A past climate with a denser atmosphere is not necessary to explain their accumulation and migration.
Collapse
Affiliation(s)
- S. Silvestro
- INAF Osservatorio Astronomico di CapodimonteNapoliItaly
- SETI InstituteMountain ViewCAUSA
| | - M. Chojnacki
- Lunar and Planetary LaboratoryUniversity of ArizonaTucsonAZUSA
- Planetary Science InstituteTucsonAZUSA
| | - D. A. Vaz
- Centre for Earth and Space Research of the University of CoimbraObservatório Geofísico e Astronómico da Universidade de CoimbraCoimbraPortugal
| | | | - H. Yizhaq
- Department of Solar Energy and Environmental Physics, BIDRBen‐Gurion University of the NegevBeershebaIsrael
| | - F. Esposito
- INAF Osservatorio Astronomico di CapodimonteNapoliItaly
| |
Collapse
|
9
|
Abstract
Recurring Slope Lineae (RSL) on Mars have been enigmatic since their discovery; their behavior resembles a seeping liquid but sources of water remain puzzling. This work demonstrates that the properties of RSL are consistent with observed behaviors of Martian and terrestrial aeolian processes. Specifically, RSL are well-explained as flows of sand that remove a thin coating of dust. Observed RSL properties are supportive of or consistent with this model, which requires no liquid water or other exotic processes, but rather indicates seasonal aeolian behavior. These settings and behaviors resemble features observed by rovers and also explain the occurrence of many slope lineae on Mars that do not meet the strict definition of RSL. This indicates that RSL can be explained simply as aeolian features. Other processes may add complexities just as they could modify the behavior of any sand dune.
Collapse
Affiliation(s)
- Colin M. Dundas
- U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA
| |
Collapse
|
10
|
Abell JT, Pullen A, Lebo ZJ, Kapp P, Gloege L, Metcalf AR, Nie J, Winckler G. A wind-albedo-wind feedback driven by landscape evolution. Nat Commun 2020; 11:96. [PMID: 31900389 PMCID: PMC6941990 DOI: 10.1038/s41467-019-13661-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/11/2019] [Indexed: 11/10/2022] Open
Abstract
The accurate characterization of near-surface winds is critical to our understanding of past and modern climate. Dust lofted by these winds has the potential to modify surface and atmospheric conditions as well as ocean biogeochemistry. Stony deserts, low dust emitting regions today, represent expansive areas where variations in surficial geology through time may drastically impact near-surface conditions. Here we use the Weather Research and Forecasting (WRF) model over the western Gobi Desert to demonstrate a previously undocumented process between wind-driven landscape evolution and boundary layer conditions. Our results show that altered surficial thermal properties through winnowing of fine-grained sediments and formation of low-albedo gravel-mantled surfaces leads to an increase in near-surface winds by up to 25%; paradoxically, wind erosion results in faster winds regionally. This wind-albedo-wind feedback also leads to an increase in the frequency of hours spent at higher wind speeds, which has implications for dust emission potential.
Collapse
Affiliation(s)
- Jordan T Abell
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA.
| | - Alex Pullen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Zachary J Lebo
- Department of Atmospheric Science, University of Wyoming, Laramie, WY, USA
| | - Paul Kapp
- Department of Geosciences, University of Arizona, Tucson, AZ, USA
| | - Lucas Gloege
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| | - Andrew R Metcalf
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Junsheng Nie
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Gisela Winckler
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
Smolyar I, Bromage T, Wikelski M. Layered patterns in nature, medicine, and materials: quantifying anisotropic structures and cyclicity. PeerJ 2019; 7:e7813. [PMID: 31632849 PMCID: PMC6797002 DOI: 10.7717/peerj.7813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022] Open
Abstract
Various natural patterns-such as terrestrial sand dune ripples, lamellae in vertebrate bones, growth increments in fish scales and corals, aortas and lamellar corpuscles in humans and animals-comprise layers of different thicknesses and lengths. Microstructures in manmade materials-such as alloys, perlite steels, polymers, ceramics, and ripples induced by laser on the surface of graphen-also exhibit layered structures. These layered patterns form a record of internal and external factors regulating pattern formation in their various systems, making it potentially possible to recognize and identify in their incremental sequences trends, periodicities, and events in the formation history of these systems. The morphology of layered systems plays a vital role in developing new materials and in biomimetic research. The structures and sizes of these two-dimensional (2D) patterns are characteristically anisotropic: That is, the number of layers and their absolute thicknesses vary significantly in different directions. The present work develops a method to quantify the morphological characteristics of 2D layered patterns that accounts for anisotropy in the object of study. To reach this goal, we use Boolean functions and an N-partite graph to formalize layer structure and thickness across a 2D plane and to construct charts of (1) "layer thickness vs. layer number" and (2) "layer area vs. layer number." We present a parameter disorder of layer structure (DStr) to describe the deviation of a study object's anisotropic structure from an isotropic analog and illustrate that charts and DStr could be used as local and global morphological characteristics describing various layered systems such as images of, for example, geological, atmospheric, medical, materials, forensic, plants, and animals. Suggested future experiments could lead to new insights into layered pattern formation.
Collapse
Affiliation(s)
- Igor Smolyar
- National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Ashvelle, NC, USA
| | - Tim Bromage
- Department of Biomaterials & Biomimetics and Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York City, NY, USA
| | - Martin Wikelski
- Max-Planck Institute for Ornithology and Department of Biology, Konstanz University, Radolfzell and Konstanz, Germany
| |
Collapse
|