1
|
Mazhar MW, Ishtiaq M, Maqbool M, Mahmoud EA, Almana FA, Elansary HO. Exploring the potential of plant astrobiology: adapting flora for extra-terrestrial habitats: a review. Biol Futur 2024:10.1007/s42977-024-00245-z. [PMID: 39302628 DOI: 10.1007/s42977-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the realm of astrobiology has expanded beyond the search for microbial life to encompass the intriguing possibility of plant life beyond our planet. Plant astrobiology delves into the adaptations and mechanisms that might allow Earth's flora to flourish in the harsh conditions of outer space and other celestial bodies. This review aims to shed light on the captivating field of plant astrobiology, its implications, and the challenges and opportunities it presents. Plant astrobiology marries the disciplines of botany and astrobiology, challenging us to envision the growth of plants beyond Earth's atmosphere. Researchers in this field are not only exploring the potential for plant life on other planets and moons but also investigating how plants could be harnessed to sustain life during extended space missions. The review discusses how plants could adapt to environments characterized by low gravity, high radiation, extreme temperature fluctuations, and different atmospheric compositions. It highlights the physiological changes necessary for plants to survive and reproduce in these conditions. A pivotal concept is the integration of plants into closed-loop life support systems, where plants would play a crucial role in recycling waste products, generating oxygen, and producing food. The review delves into ongoing research involving genetic modifications and synthetic biology techniques to enhance plants' resilience in space environments. It addresses ethical considerations associated with altering organisms for off-planet habitation. Additionally, the review contemplates the psychological and emotional benefits of having greenery in enclosed, isolated space habitats. The review concludes that by employing advanced research methodologies, the field of plant astrobiology can greatly enhance the viability and sustainability of future space missions, highlighting the essential role of plants in sustaining long-term human presence beyond Earth.
Collapse
Affiliation(s)
- Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan.
- Department of Botany, Climate Change Research Centre, Herbarium and Biodiversity Conservation, Azad Jammu and Kashmir University of Bhimber (AJKUoB), Bhimber, 10040, Pakistan.
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Eman A Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, 34511, Egypt
| | - Fahed A Almana
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Hosam O Elansary
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Bartak D, Šachlová Š, Kašpar V, Říha J, Dobrev D, Večerník P, Hlaváčková V, Matulová M, Černá K. Dramatic loss of microbial viability in bentonite exposed to heat and gamma radiation: implications for deep geological repository. World J Microbiol Biotechnol 2024; 40:264. [PMID: 38990244 PMCID: PMC11239606 DOI: 10.1007/s11274-024-04069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.
Collapse
Affiliation(s)
- Deepa Bartak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - Šárka Šachlová
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Vlastislav Kašpar
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Jakub Říha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - David Dobrev
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Petr Večerník
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Veronika Hlaváčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - Michaela Matulová
- Radioactive Waste Repository Authority, SÚRAO, Dlážděná 6, Prague, 11000, Czech Republic
| | - Kateřina Černá
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic.
| |
Collapse
|
3
|
Rawat M, Chauhan M, Pandey A. Extremophiles and their expanding biotechnological applications. Arch Microbiol 2024; 206:247. [PMID: 38713374 DOI: 10.1007/s00203-024-03981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.
Collapse
Affiliation(s)
- Manvi Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
4
|
Huanca-Juarez J, Nascimento-Silva EA, Silva NH, Silva-Rocha R, Guazzaroni ME. Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Front Microbiol 2023; 14:1268315. [PMID: 37840709 PMCID: PMC10568318 DOI: 10.3389/fmicb.2023.1268315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance.
Collapse
Affiliation(s)
- Joshelin Huanca-Juarez
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Edson Alexandre Nascimento-Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Ninna Hirata Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
| | | | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
5
|
Sürmeli Y, Şanlı-Mohamed G. Engineering of xylanases for the development of biotechnologically important characteristics. Biotechnol Bioeng 2023; 120:1171-1188. [PMID: 36715367 DOI: 10.1002/bit.28339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Xylanases are the main biocatalysts used for the reduction of the xylan backbone from hemicellulose, randomly splitting off β-1,4-glycosidic linkages between xylopyranosyl residues. Xylanase market has been annually estimated at 500 million US Dollars and they are potentially used in broad industrial process ranges such as paper pulp biobleaching, xylo-oligosaccharide production, and biofuel manufacture from lignocellulose. The highly stable xylanases are preferred in the downstream procedure of industrial processes because they can tolerate severe conditions. Almost all native xylanases can not endure adverse conditions thus they are industrially not proper to be utilized. Protein engineering is a powerful technology for developing xylanases, which can effectively work in adverse conditions and can meet requirements for industrial processes. This study considered state-of-the-art strategies of protein engineering for creating the xylanase gene diversity, high-throughput screening systems toward upgraded traits of the xylanases, and the prediction and comprehensive analysis of the target mutations in xylanases by in silico methods. Also, key molecular factors have been elucidated for industrial characteristics (alkaliphilic enhancement, thermal stability, and catalytic performance) of GH11 family xylanases. The present review explores industrial characteristics improved by directed evolution, rational design, and semi-rational design as protein engineering approaches for pulp bleaching process, xylooligosaccharides production, and biorefinery & bioenergy production.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | | |
Collapse
|
6
|
Sürmeli Y, Şanlı-Mohamed G. Structural and functional analyses of GH51 alpha-L-arabinofuranosidase of Geobacillus vulcani GS90 reveal crucial residues for catalytic activity and thermostability. Biotechnol Appl Biochem 2022. [PMID: 36455188 DOI: 10.1002/bab.2423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/16/2022] [Indexed: 12/04/2022]
Abstract
Alpha-L-arabinofuranosidase (Abf) is of big interest in various industrial areas. Directed evolution is a powerful strategy to identify significant residues underlying Abf properties. Here, six active variants from GH51 Abf of Geobacillus vulcani GS90 (GvAbf) by directed evolution were overproduced, extracted, and analyzed at biochemical and structural levels. According to the activity and thermostability results, the most-active and the least-active variants were found as GvAbf51 and GvAbf52, respectively. GvAbf63 variant was more active than parent GvAbf by 20% and less active than GvAbf51. Also, the highest thermostability belonged to GvAbf52 with 80% residual activity after 1 h. Comparative sequence and structure analyses revealed that GvAbf51 possessed L307S displacement. Thus, this study suggested that L307 residue may be critical for GvAbf activity. GvAbf63 had H30D, Q90H, and L307S displacements, and H30 was covalently bound to E29 catalytic residue. Thus, H30D may decrease the positive effect of L307S on GvAbf63 activity, preventing E29 action. Besides, GvAbf52 possessed S215N, L307S, H473P, and G476C substitutions and S215 was close to E175 (acid-base residue). S215N may partially disrupt E175 action. Overall effect of all substitutions in GvAbf52 may result in the formation of the C-C bond between C171 and C213 by becoming closer to each other.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Department of Chemistry, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
7
|
Asyakina L, Vorob'eva E, Proskuryakova L, Zharko M. Evaluating extremophilic microorganisms in industrial regions. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abiotic and biotic stresses have a major impact on crop growth. Stress affects the root system and decreases the amount of nutrients in fruits. Modern agricultural technologies help replace mineral fertilizers with new generation biopreparation. Unlike chemical fertilizers, biofertilizers reduce the risk of adverse environmental impacts. Of special interest are extremophilic microorganisms able to survive in extreme conditions. We aimed to study the phytostimulating ability of extremophilic bacteria isolated from disturbed lands in the coal-mining region.
We isolated microorganisms from disturbed lands and studied their cultural, morphological, and biochemical properties. Then, we determined their ability to synthesize indole-3-acetic acids. The extremophilic bacteria were identified and subjected to biocompatibility testing by co-cultivation. Next, we created consortia of pure cultures and analyzed biomass growth. Finally, the biopreparation was experimentally tested on Trifolium prantense L. seeds.
We isolated 10 strains of microorganisms that synthesized 4.39 to 16.32 mg/mL of indole-3-acetic acid. The largest amounts of the acid were produced by Pantoea spp., Enterococcus faecium, Leclercia spp., Rothia endophytica, and Klebsiella oxytoca. A consortium of Pantoea spp., E. faecium, and R. endophytica at a ratio of 1:1:1 produced the largest amount of indole-3-acetic acid (15.59 mg/mL) and accumulated maximum biomass. The addition of 0.2% L-tryptophan to the nutrient medium increased the amount of indole-3-acetic acid to 18.45 mg/mL. When the T. prantense L. seeds were soaked in the biopreparation (consortium’s culture fluid) at a concentration of 2.5, the sprouts were 1.4 times longer on the 10th day of growth, compared to the control.
The consortium of Pantoea spp., E. faecium, and R. endophytica (1:1:1) stimulated the growth of T. prantense L. seeds. Our findings can be further used to develop biofertilizers for agriculture.
Collapse
|
8
|
Rivas-Párraga R, Izquierdo A, Sánchez K, Bolaños-Guerrón D, Alfaro-Núñez A. Identification and phylogenetic characterization based on DNA sequences from RNA ribosomal genes of thermophilic microorganisms in a high elevation Andean tropical geothermal spring. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Several microorganisms can survive in harsh acid environments in geothermal springs at high temperatures across the Equatorial Andes Mountains. However, little is known about their physiological features and phylogenetic composition. Here we identify thermophilic microorganisms (bacteria, fungi, and microalgae) hosted in an almost unexplored geothermal spring (known as “Aguas Hediondas”). The phylogeny of the cultures was determined by analyzing physiological features and DNA sequences of PCR products for 16S rRNA, ITS, and 23S rRNA genes. Twenty pure cultures were isolated from the samples, including 17 for bacteria, one for cyanobacterium, one for eukaryotic microalgae, and one for fungus. Most bacterial strains were gram-positive, spore-forming, and bacilli (Bacillus). Cyanobacterium strain belonged to Chroococcidiopsis and the eukaryotic microalgae to Chlorophyta. The unique fungal strain isolated was closely related to T. duponti. Through our study, isolated thermophilic bacteria, microalgae and fungi from the “Aguas Hediondas” geothermal spring were characterized and identified. This study represents one of the first extensive molecular characterizations of extremophile microbes in the Tropical Equatorial Andes.
Keywords. microbial diversity; DNA markers; extremophiles; phylogenetics
Collapse
Affiliation(s)
- Roque Rivas-Párraga
- Life science and Agriculture Department. Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Andrés Izquierdo
- Life science and Agriculture Department. Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, P.O. Box 171-5-231B, Sangolquí, Ecuador Ecuador Grupo de Investigación en Microbiología y Ambiente (GIMA), Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Karen Sánchez
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuqui, Ecuador
| | - Darío Bolaños-Guerrón
- Department of Earth Science and Constructions, Geographical and Environmental Engineering, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, P.O. Box 171-5-231B, Sangolquí, Ecuador Ecuador
| | - Alonzo Alfaro-Núñez
- Clinical Biochemistry Department, Næstved Hospital, Ringstegade 57a, 4700 Næstved, Denmark 5 Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| |
Collapse
|
9
|
Dong X, Wang W, Li S, Han H, Lv P, Yang C. Thermoacidophilic Alicyclobacillus Superoxide Dismutase: Good Candidate as Additives in Food and Medicine. Front Microbiol 2021; 12:577001. [PMID: 33815303 PMCID: PMC8014015 DOI: 10.3389/fmicb.2021.577001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Thermoacidophilic Alicyclobacillus strains attract great interests as the resource of thermostable or acidic enzymes. In this study, a putative gene encoding superoxide dismutase (AaSOD) was identified in a thermoacidophilic Alicyclobacillus strain. With a 16-fold activity observed, the AaSOD activity expressing in the medium of manganese enrichment was much higher than that in the iron medium. In addition, the purified AaSOD can be reconstituted exclusively with either Fe2+ or Mn2+, with its Mn-bound protein showing 25-fold activity than that of Fe-bound form. The optimal temperature for AaSOD reaction was 35°C, and was highly stable at any certain temperature up to 80°C. Of particular interest, the enzyme is found to be very stable across a wide pH range spanning from 2.0 to 10.0, which confers its robust stability in the acidic stomach environment and implies striking potentials as food additive and for medical use.
Collapse
Affiliation(s)
- Xueqian Dong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China.,Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shannan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Hongyu Han
- Shandong Food Ferment Industry Research & Design Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peiwen Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Algan M, Sürmeli Y, Şanlı-Mohamed G. A novel thermostable xylanase from Geobacillus vulcani GS90: Production, biochemical characterization, and its comparative application in fruit juice enrichment. J Food Biochem 2021; 45:e13716. [PMID: 33788288 DOI: 10.1111/jfbc.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Xylanases have great attention to act as a potential role in agro-industrial processes. In this study, production, characterization, and fruit juice application of novel xylanase from thermophilic Geobacillus vulcani GS90 (GvXyl) were performed. GvXyl was purified via acetone precipitation and gel-filtration chromatography. The results showed that GvXyl had 1,671.4 U/mg of specific activity and optimally worked at pH 8 and 55°C. It was also active in a wide pH (3-9) and temperature (30-90ºC) ranges. GvXyl was highly stable at 90ºC and relatively stable at pH 3-9. The kinetic parameters of GvXyl were obtained as Km , Vmax , and kcat ; 10.2 mg/ml, 4,104 µmol min-1 mg-1 , and 3,542.6 s-1 , respectively. GvXyl had higher action than commercial xylanase in fruit juice enrichment. These results revealed that GvXyl might possess a potential influence in fruit juice processing because of its high specific activity and great thermal stability. PRACTICAL APPLICATIONS: Polysaccharides include starch, pectin, and hemicellulose create problems by lowering fruit juice quality in beverages. To overcome this problem, various clarification processes might be applied to natural fruit juices. Even though chemicals are widely used for this purpose, recently enzymes including xylanases are preferred for obtaining high-quality products. In this study, we reported the production and biochemical characterization of novel thermostable xylanase from thermophilic G. vulcani GS90 (GvXyl). Also, apple and orange juice enrichment were performed with the novel xylanase to increase the quality in terms of yield, clarity, and reducing sugar substance. The improved quality features of apple and orange juices with GvXyl was then compared to commercially available β-1,4-xylanase. The results revealed that GvXyl might possess a potential influence in fruit juice processing because of its high specific activity and great thermal stability.
Collapse
Affiliation(s)
- Müge Algan
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, İzmir, Turkey.,Science Faculty, Department of Chemistry, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
11
|
Fongaro G, Maia GA, Rogovski P, Cadamuro RD, Lopes JC, Moreira RS, Camargo AF, Scapini T, Stefanski FS, Bonatto C, Marques Souza DS, Stoco PH, Duarte RTD, Cabral da Cruz AC, Wagner G, Treichel H. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr Genomics 2020; 21:240-252. [PMID: 33071618 PMCID: PMC7521039 DOI: 10.2174/1389202921999200601144137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Abstract: Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
Collapse
Affiliation(s)
- Gislaine Fongaro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Augusto Maia
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Paula Rogovski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Dorighello Cadamuro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joana Camila Lopes
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Renato Simões Moreira
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline Frumi Camargo
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Thamarys Scapini
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fábio Spitza Stefanski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charline Bonatto
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Doris Sobral Marques Souza
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Patrícia Hermes Stoco
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Tadeu Delgado Duarte
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
12
|
Pavlova LM, Radomskaya VI, Shumilova LP, Kezina TV, Ivanov VV. Biosorption of Toxic Elements from Multicomponent Solutions by Microfungal Biomass. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363219130176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Morono Y, Wishart JR, Ito M, Ijiri A, Hoshino T, Torres M, Verba C, Terada T, Inagaki F, Colwell FS. Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale. Front Microbiol 2019; 10:376. [PMID: 30915042 PMCID: PMC6422894 DOI: 10.3389/fmicb.2019.00376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/13/2019] [Indexed: 11/29/2022] Open
Abstract
Hydraulic fracturing is a prominent method of natural gas production that uses injected, high-pressure fluids to fracture low permeability, hydrocarbon rich strata such as shale. Upon completion of a well, the fluid returns to the surface (produced water) and contains natural gas, subsurface constituents, and microorganisms (Barbot et al., 2013; Daly et al., 2016). While the microbial community of the produced fluids has been studied in multiple gas wells, the activity of these microorganisms and their relation to biogeochemical activity is not well understood. In this experiment, we supplemented produced fluid with 13C-labeled carbon sources (glucose, acetate, bicarbonate, methanol, or methane), and 15N-labeled ammonium chloride in order to isotopically trace microbial activity over multiple day in anoxic incubations. Nanoscale secondary ion mass spectrometry (NanoSIMS) was used to generate isotopic images of 13C and 15N incorporation in individual cells, while isotope ratio monitoring–gas chromatography–mass spectrometry (IRM–GC–MS) was used to measure 13CO2, and 13CH4 as metabolic byproducts. Glucose, acetate, and methanol were all assimilated by microorganisms under anoxic conditions. 13CO2 production was only observed with glucose as a substrate indicating that catabolic activity was limited to this condition. The microbial communities observed at 0, 19, and 32 days of incubation did not vary between different carbon sources, were low in diversity, and composed primarily of the class Clostridia. The primary genera detected in the incubations, Halanaerobium and Fusibacter, are known to be adapted to harsh physical and chemical conditions consistent with those that occur in the hydrofracturing environment. This study provides evidence that microorganisms in produced fluid are revivable in laboratory incubations and retained the ability to metabolize added carbon and nitrogen substrates.
Collapse
Affiliation(s)
- Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Jessie R Wishart
- National Energy Technology Laboratory, United States Department of Energy, Albany, OR, United States
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Akira Ijiri
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Marta Torres
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Circe Verba
- National Energy Technology Laboratory, United States Department of Energy, Albany, OR, United States
| | | | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Kochi, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Wakai S. Biochemical and thermodynamic analyses of energy conversion in extremophiles. Biosci Biotechnol Biochem 2018; 83:49-64. [PMID: 30381012 DOI: 10.1080/09168451.2018.1538769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A variety of extreme environments, characterized by extreme values of various physicochemical parameters (temperature, pressure, salinity, pH, and so on), are found on Earth. Organisms that favorably live in such extreme environments are called extremophiles. All living organisms, including extremophiles, must acquire energy to maintain cellular homeostasis, including extremophiles. For energy conversion in harsh environments, thermodynamically useful reactions and stable biomolecules are essential. In this review, I briefly summarize recent studies of extreme environments and extremophiles living in these environments and describe energy conversion processes in various extremophiles based on my previous research. Furthermore, I discuss the correlation between the biological system of electrotrophy, a third biological energy acquisition system, and the mechanism underlying microbiologically influenced corrosion. These insights into energy conversion in extremophiles may improve our understanding of the "limits of life". Abbreviations: PPi: pyrophosphate; PPase: pyrophosphatase; ITC: isothermal titration microcalorimetry; SVNTase: Shewanella violacea 5'-nucleotidase; SANTase: Shewanella amazonensis 5'-nucleotidase.
Collapse
Affiliation(s)
- Satoshi Wakai
- a Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| |
Collapse
|
15
|
A thermophilic α-l-Arabinofuranosidase from Geobacillus vulcani GS90: heterologous expression, biochemical characterization, and its synergistic action in fruit juice enrichment. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3075-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Optimization of the production of an extracellular and thermostable amylolytic enzyme by Thermus thermophilus HB8 and basic characterization. Extremophiles 2017; 22:189-202. [PMID: 29260387 DOI: 10.1007/s00792-017-0987-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The objective of this study was to determine the potential of Thermus thermophilus HB8 for accumulating a high level of extracellular, thermostable amylolytic enzyme. Initial production tests indicated clearly that only very low levels of amylolytic activity could be detected, solely from cells after extraction using the mild, non-ionic detergent Triton X-100. A sequential optimization strategy, based on statistical designs, was used to enhance greatly the production of extracellular amylolytic activity to achieve industrially attractive enzyme titers. Focus was placed on the optimal level of initial biomass concentration, culture medium composition and temperature for maximizing extracellular amylolytic enzyme accumulation. Empirical models were then developed describing the effects of the experimental parameters and their interactions on extracellular amylolytic enzyme production. Following such efforts, extracellular amylolytic enzyme accumulation was increased more than 70-fold, with enzyme titers in the 76 U/mL range. The crude extracellular enzyme was thereafter partially characterized. The optimal temperature and pH values were found to be 80 °C and 9.0, respectively. 100% of the initial enzyme activity could be recovered after incubation for 24 h at 80 °C, therefore, proving the very high thermostability of the enzyme preparation.
Collapse
|
17
|
Kovacic F, Mandrysch A, Poojari C, Strodel B, Jaeger KE. Structural features determining thermal adaptation of esterases. Protein Eng Des Sel 2016; 29:65-76. [PMID: 26647400 PMCID: PMC5943684 DOI: 10.1093/protein/gzv061] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 11/14/2022] Open
Abstract
The adaptation of microorganisms to extreme living temperatures requires the evolution of enzymes with a high catalytic efficiency under these conditions. Such extremophilic enzymes represent valuable tools to study the relationship between protein stability, dynamics and function. Nevertheless, the multiple effects of temperature on the structure and function of enzymes are still poorly understood at the molecular level. Our analysis of four homologous esterases isolated from bacteria living at temperatures ranging from 10°C to 70°C suggested an adaptation route for the modulation of protein thermal properties through the optimization of local flexibility at the protein surface. While the biochemical properties of the recombinant esterases are conserved, their thermal properties have evolved to resemble those of the respective bacterial habitats. Molecular dynamics simulations at temperatures around the optimal temperatures for enzyme catalysis revealed temperature-dependent flexibility of four surface-exposed loops. While the flexibility of some loops increased with raising the temperature and decreased with lowering the temperature, as expected for those loops contributing to the protein stability, other loops showed an increment of flexibility upon lowering and raising the temperature. Preserved flexibility in these regions seems to be important for proper enzyme function. The structural differences of these four loops, distant from the active site, are substantially larger than for the overall protein structure, indicating that amino acid exchanges within these loops occurred more frequently thereby allowing the bacteria to tune atomic interactions for different temperature requirements without interfering with the overall enzyme function.
Collapse
Affiliation(s)
- Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426 Juelich, Germany
| | - Agathe Mandrysch
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426 Juelich, Germany
| | - Chetan Poojari
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Juelich GmbH, D-52426 Juelich, Germany Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| | - Birgit Strodel
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Juelich GmbH, D-52426 Juelich, Germany Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Duesseldorf, D-40225 Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Duesseldorf, Forschungszentrum Juelich, D-52426 Juelich, Germany Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Juelich GmbH, D-52426 Juelich, Germany
| |
Collapse
|
18
|
Dopson M, Ni G, Sleutels THJA. Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 2015; 40:164-81. [PMID: 26474966 PMCID: PMC4802824 DOI: 10.1093/femsre/fuv044] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
Microbial electrochemical systems exploit the metabolism of microorganisms to generate electrical energy or a useful product. In the past couple of decades, the application of microbial electrochemical systems has increased from the use of wastewaters to produce electricity to a versatile technology that can use numerous sources for the extraction of electrons on the one hand, while on the other hand these electrons can be used to serve an ever increasing number of functions. Extremophilic microorganisms grow in environments that are hostile to most forms of life and their utilization in microbial electrochemical systems has opened new possibilities to oxidize substrates in the anode and produce novel products in the cathode. For example, extremophiles can be used to oxidize sulfur compounds in acidic pH to remediate wastewaters, generate electrical energy from marine sediment microbial fuel cells at low temperatures, desalinate wastewaters and act as biosensors of low amounts of organic carbon. In this review, we will discuss the recent advances that have been made in using microbial catalysts under extreme conditions and show possible new routes that extremophilic microorganisms open for microbial electrochemical systems.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Gaofeng Ni
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Tom H J A Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
19
|
Chowdhury T, Sarkar M, Chaudhuri B, Chattopadhyay B, Halder UC. Participatory role of zinc in structural and functional characterization of bioremediase: a unique thermostable microbial silica leaching protein. J Biol Inorg Chem 2015; 20:791-803. [DOI: 10.1007/s00775-015-1266-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/10/2015] [Indexed: 11/25/2022]
|
20
|
Chen Y, Mao W, Wang H, Zhu W, Niu Q, Fang X, Li T. Structure elucidation of a galactofuranose-rich heteropolysaccharide from aciduric fungus penicillium purpurogenum JS03-21. Glycoconj J 2015; 32:29-37. [DOI: 10.1007/s10719-014-9568-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
21
|
Mikulic P, Beardall J. Contrasting ecotoxicity effects of zinc on growth and photosynthesis in a neutrophilic alga (Chlamydomonas reinhardtii) and an extremophilic alga (Cyanidium caldarium). CHEMOSPHERE 2014; 112:402-411. [PMID: 25048933 DOI: 10.1016/j.chemosphere.2014.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to determine the contrasting ecotoxicity effects of zinc on growth and photosynthesis in a neutrophilic (Chlamydomonas reinhardtii) and an extremophilic (Cyanidium caldarium) alga. Experiments were carried out to see if cells acclimated to zinc would respond differently to cells that were unexposed to zinc. The study also aimed to see if extremophiles displayed different acclimation properties to neutrophiles. Results showed that the neutrophilic alga C. reinhardtii, was more susceptible to free zinc and had a lower IC50 value than the extremophile, however its stress response protected the photosynthetic apparatus. Upon acclimation, the photosynthetic abilities of C. reinhardtii were not significantly compromised when exposed to toxic levels of free zinc. On the other hand, C. caldarium had a stress response which allowed it to tolerate significantly higher amounts of free zinc in its environment compared to C. reinhardtii , however the stress response did not protect the photosynthetic apparatus, and upon acclimation C. caldarium was no better equipped to protect its photosynthetic integrity than unexposed cells.
Collapse
Affiliation(s)
- Paulina Mikulic
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
22
|
Eram MS, Ma K. Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 2013; 3:578-96. [PMID: 24970182 PMCID: PMC4030962 DOI: 10.3390/biom3030578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles.
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
23
|
Mandelli F, Franco Cairo J, Citadini A, Büchli F, Alvarez T, Oliveira R, Leite V, Paes Leme A, Mercadante A, Squina F. The characterization of a thermostable and cambialistic superoxide dismutase from Thermus filiformis. Lett Appl Microbiol 2013; 57:40-6. [DOI: 10.1111/lam.12071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 01/06/2023]
Affiliation(s)
- F. Mandelli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas Brazil
- Departamento de Ciência de Alimentos da Faculdade de Engenharia de Alimentos; UNICAMP; Campinas Brazil
| | - J.P.L. Franco Cairo
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas Brazil
| | - A.P.S. Citadini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas Brazil
| | - F. Büchli
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas Brazil
| | - T.M. Alvarez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas Brazil
| | - R.J. Oliveira
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas; Universidade Estadual Paulista; São José do Rio Preto Brazil
| | - V.B.P. Leite
- Departamento de Física; Instituto de Biociências, Letras e Ciências Exatas; Universidade Estadual Paulista; São José do Rio Preto Brazil
| | - A.F. Paes Leme
- Laboratório Nacional de Biociências (LNBio); do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas Brazil
| | - A.Z. Mercadante
- Departamento de Ciência de Alimentos da Faculdade de Engenharia de Alimentos; UNICAMP; Campinas Brazil
| | - F.M. Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE); do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM); Campinas Brazil
| |
Collapse
|
24
|
Wu Z, Kan FWK, She YM, Walker VK. Biofilm, ice recrystallization inhibition and freeze-thaw protection in an epiphyte community. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812040138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
de Carvalho CC. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol 2012; 163:125-36. [DOI: 10.1016/j.resmic.2011.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
|
26
|
Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology. SUSTAINABILITY 2010. [DOI: 10.3390/su2061602] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|