1
|
Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in Legume-Rhizobia Symbiosis. Int J Mol Sci 2023; 24:17397. [PMID: 38139226 PMCID: PMC10743482 DOI: 10.3390/ijms242417397] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.
Collapse
Affiliation(s)
- Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeny Abakumov
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
2
|
Micci A, Zhang Q, Chang X, Kingsley K, Park L, Chiaranunt P, Strickland R, Velazquez F, Lindert S, Elmore M, Vines PL, Crane S, Irizarry I, Kowalski KP, Johnston-Monje D, White JF. Histochemical Evidence for Nitrogen-Transfer Endosymbiosis in Non-Photosynthetic Cells of Leaves and Inflorescence Bracts of Angiosperms. BIOLOGY 2022; 11:biology11060876. [PMID: 35741397 PMCID: PMC9220352 DOI: 10.3390/biology11060876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. We detected chemical exchanges between intracellular bacteria and plant cells. We found that endophytic bacteria that show evidence of the transfer of nitrogen to plants are present in non-photosynthetic cells of leaves and bracts of diverse plant species. Nitrogen transfer from bacteria was observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. The most efficient of the nitrogen-transfer endosymbioses were seen to involve glandular trichomes, as seen in hops (Humulus lupulus) and hemp (Cannabis sativa). Trichome chemistry is hypothesized to function to scavenge oxygen around bacteria to facilitate nitrogen fixation. Abstract We used light and confocal microscopy to visualize bacteria in leaf and bract cells of more than 30 species in 18 families of seed plants. Through histochemical analysis, we detected hormones (including ethylene and nitric oxide), superoxide, and nitrogenous chemicals (including nitric oxide and nitrate) around bacteria within plant cells. Bacteria were observed in epidermal cells, various filamentous and glandular trichomes, and other non-photosynthetic cells. Most notably, bacteria showing nitrate formation based on histochemical staining were present in glandular trichomes of some dicots (e.g., Humulus lupulus and Cannabis sativa). Glandular trichome chemistry is hypothesized to function to scavenge oxygen around bacteria and reduce oxidative damage to intracellular bacterial cells. Experiments to assess the differential absorption of isotopic nitrogen into plants suggest the assimilation of nitrogen into actively growing tissues of plants, where bacteria are most active and carbohydrates are more available. The leaf and bract cell endosymbiosis types outlined in this paper have not been previously reported and may be important in facilitating plant growth, development, oxidative stress resistance, and nutrient absorption into plants. It is unknown whether leaf and bract cell endosymbioses are significant in increasing the nitrogen content of plants. From the experiments that we conducted, it is impossible to know whether plant trichomes evolved specifically as organs for nitrogen fixation or if, instead, trichomes are structures in which bacteria easily colonize and where some casual nitrogen transfer may occur between bacteria and plant cells. It is likely that the endosymbioses seen in leaves and bracts are less efficient than those of root nodules of legumes in similar plants. However, the presence of endosymbioses that yield nitrate in plants could confer a reduced need for soil nitrogen and constitute increased nitrogen-use efficiency, even if the actual amount of nitrogen transferred to plant cells is small. More research is needed to evaluate the importance of nitrogen transfer within leaf and bract cells of plants.
Collapse
Affiliation(s)
- April Micci
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
- Correspondence: (A.M.); (J.F.W.); Tel.: +848-932-6286 (J.F.W.)
| | - Qiuwei Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Xiaoqian Chang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Kathryn Kingsley
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Linsey Park
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Peerapol Chiaranunt
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Raquele Strickland
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Fernando Velazquez
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Sean Lindert
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Matthew Elmore
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Philip L. Vines
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
| | - Sharron Crane
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Ivelisse Irizarry
- School of Health and Sciences, Universidad del Sagrado Corazón, San Juan 00914, Puerto Rico;
| | - Kurt P. Kowalski
- US Geological Survey Great Lakes Science Center, Ann Arbor, MI 48105, USA;
| | - David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali 760043, Colombia;
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; (Q.Z.); (X.C.); (K.K.); (L.P.); (P.C.); (R.S.); (F.V.); (S.L.); (M.E.); (P.L.V.)
- Correspondence: (A.M.); (J.F.W.); Tel.: +848-932-6286 (J.F.W.)
| |
Collapse
|
3
|
Jiang G, Yang J, Li X, Cao Y, Liu X, Ling J, Wang H, Zhong Z, Zhu J. Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol Lett 2019; 366:5290313. [PMID: 30657885 DOI: 10.1093/femsle/fnz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are not only toxic products of oxygen from aerobic metabolism or stress but also signalling molecules involved in the development of the legume-Rhizobium symbiosis. To assess the importance of alkyl hydroperoxide reductase (AhpCD) in the nitrogen-fixating bacterium Azorhizobium caulinodans, we investigated the phenotypes of the ∆ahpCD strain with regards to ROS resistance and symbiotic interactions with Sesbania rostrata. The ∆ahpCD strain was notably more sensitive than its parent strain to hydrogen peroxide (H2O2) but not to two organic peroxides, in the early log phase. The expression of ahpCD was not controlled by a LysR-type transcriptional activator either in vitro or in vivo. The catalase activity of the ∆ahpCD strain was affected at a relatively low level of H2O2 stress. Furthermore, the ∆ahpCD strain induced a reduced number of stem nodules in S. rostrata with lowering of nitrogenase activity. These data suggest that A. caulinodans AhpCD is not only important for H2O2 detoxification in vitro but also critical for symbiosis with S. rostrata. Functional analysis of AhpCD is worth investigating in other rhizobia to gain a comprehensive view of its contributions to ROS defence and symbiotic association with legumes.
Collapse
Affiliation(s)
- Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, National Engineering Research Centre for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xingjuan Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Ling
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| |
Collapse
|
4
|
Kolupaev YE, Karpets YV, Beschasniy SP, Dmitriev AP. Gasotransmitters and Their Role in Adaptive Reactions of Plant Cells. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719050098] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Archetti M. Maintenance of variation in mutualism by screening. Evolution 2019; 73:2036-2043. [DOI: 10.1111/evo.13816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Marco Archetti
- Department of BiologyPennsylvania State University University Park Pennsylvania 18602
- Huck Institutes of the Life SciencesPennsylvania State University University Park Pennsylvania 18602
| |
Collapse
|
6
|
Chromium(VI) Toxicity in Legume Plants: Modulation Effects of Rhizobial Symbiosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8031213. [PMID: 29662899 PMCID: PMC5832134 DOI: 10.1155/2018/8031213] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/31/2017] [Indexed: 11/18/2022]
Abstract
Most legume species have the ability to establish a symbiotic relationship with soil nitrogen-fixing rhizobacteria that promote plant growth and productivity. There is an increasing evidence of reactive oxygen species (ROS) important role in formation of legume-rhizobium symbiosis and nodule functioning. Environmental pollutants such as chromium compounds can cause damage to rhizobia, legumes, and their symbiosis. In plants, toxic effects of chromium(VI) compounds are associated with the increased production of ROS and oxidative stress development as well as with inhibition of pigment synthesis and modification of virtually all cellular components. These metabolic changes result in inhibition of seed germination and seedling development as well as reduction of plant biomass and crop yield. However, if plants establish symbiosis with rhizobia, heavy metals are accumulated preferentially in nodules decreasing the toxicity of metals to the host plant. This review summarizes data on toxic effects of chromium on legume plants and legume-rhizobium symbiosis. In addition, we discussed the role of oxidative stress in both chromium toxicity and formation of rhizobial symbiosis and use of nodule bacteria for minimizing toxic effects of chromium on plants.
Collapse
|
7
|
Loshchinina EA, Nikitina VE. Role of the NO synthase system in response to abiotic stress factors for basidiomycetes Lentinula edodes and Grifola frondosa. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716020120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Glyan’ko AK. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815050063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Alen’kina SA, Petrova LP, Sokolova MK, Chernyshova MP, Trutneva KA, Bogatyrev VA, Nikitina VE. Comparative assessment of inductive effects of Azospirillum lectins with different antigenic properties on the signal systems of wheat seedling roots. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Webb KJ, Cookson A, Allison G, Sullivan ML, Winters AL. Polyphenol oxidase affects normal nodule development in red clover (Trifolium pratense L.). FRONTIERS IN PLANT SCIENCE 2014; 5:700. [PMID: 25566275 PMCID: PMC4269121 DOI: 10.3389/fpls.2014.00700] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/25/2014] [Indexed: 05/09/2023]
Abstract
Polyphenol oxidase (PPO) may have multiple functions in tissues depending on its cellular or tissue localization. Here we use PPO RNAi transformants of red clover (Trifolium pratense) to determine the role PPO plays in normal development of plants, and especially in N2-fixing nodules. In red clover, PPO was not essential for either growth or nodule production, or for nodule function in plants grown under optimal, N-free conditions. However, absence of PPO resulted in a more reduced environment in all tissues, as measured by redox potential, and caused subtle developmental changes in nodules. Leaves and, to a lesser extent nodules, lacking PPO tended to accumulate phenolic compounds. A comparison of nodules of two representative contrasting clones by microscopy revealed that nodules lacking PPO were morphologically and anatomically subtly altered, and that phenolics accumulated in different cells and tissues. Developing nodules lacking PPO were longer, and there were more cell layers within the squashed cell layer (SCL), but the walls of these cells were less thickened and the cells were less squashed. Within the N2-fixing zone, bacteroids appeared more granular and were less tightly packed together, and were similar to developmentally compromised bacteroids elicited by catalase mutant rhizobia reported elsewhere.
Collapse
Affiliation(s)
- K. Judith Webb
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
- *Correspondence: K. Judith Webb, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Gogerddan, Ceredigion SY23 3EE, UK e-mail:
| | - Alan Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Gordon Allison
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Michael L. Sullivan
- US Dairy Forage Research Center, Agricultural Research Service, United States Department of AgricultureMadison, WI, USA
| | - Ana L. Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
11
|
Maksimov IV, Valeev AS, Cherepanova EA, Burkhanova GF. Effect of chitooligosaccharides with different degrees of acetylation on the activity of wheat pathogen-inducible anionic peroxidase. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813060124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Glyan’ko AK, Ischenko AA. Level nitric oxide (NO) and growth of roots of etiolated pea seedlings. BIOL BULL+ 2013. [DOI: 10.1134/s106235901306006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Alen’kina SA, Trutneva KA, Nikitina VE. Change in the content of salicylic acid and activities of phenylalanine ammonia-lyase and catalase in wheat seedling roots under the influence of Azospirilium lectins. BIOL BULL+ 2013. [DOI: 10.1134/s1062359013060022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Glyan'ko AK. Initiation of nitric oxide (NO) synthesis in roots of etiolated seedlings of pea (Pisum sativum L.) under the influence of nitrogen-containing compounds. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:471-6. [PMID: 23848149 DOI: 10.1134/s0006297913050052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The level of nitric oxide (NO) in roots of 2-day-old etiolated pea (Pisum sativum L.) seedlings was investigated by fluorescence microscopy using the fluorescent probe 4,5-diaminofluorescein diacetate. Segments representing transversal (cross) cuts of the roots having thickness of 100 to 150 µm (a segment of the root located 10 to 15 mm from the apex) were analyzed. A substantial concentration of NO in the roots was registered when the seedlings were grown in water (control). Addition of 4 mM sodium nitroprusside, 20 mM KNO₃, 2 mM NaNO₂, 2 mM L-arginine into the growth medium increased NO concentration with respect to the control by 1.7- to 2.3-fold. Inhibitors of animal NO-synthase - 1 mM Nω-nitro-L-arginine methyl ester hydrochloride and 1 mM aminoguanidine hydrochloride - reduced the intensity of fluorescence in the root segments in the presence of all the studied compounds. In medium with KNO₃, the inhibitor of nitrate reductase -150 µM sodium tungstate - lowered the fluorescence intensity by 60%. Scavengers of nitric oxide - 100 µM 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and 4 µM hemoglobin - lowered NO concentration in all the studied variants. Potassium ferrocyanide (4 mM) as the inactive analog of sodium nitroprusside inhibited generation of NO. These results are discussed regarding possible pathways of NO synthesis in plants.
Collapse
Affiliation(s)
- A K Glyan'ko
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, P.O. box 317, Russia.
| |
Collapse
|
15
|
Muresu R, Tondello A, Polone E, Sulas L, Baldan B, Squartini A. Antioxidant treatments counteract the non-culturability of bacterial endophytes isolated from legume nodules. Arch Microbiol 2013; 195:385-91. [DOI: 10.1007/s00203-013-0886-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 02/24/2013] [Accepted: 03/22/2013] [Indexed: 01/22/2023]
|
16
|
Moscatiello R, Baldan B, Squartini A, Mariani P, Navazio L. Oligogalacturonides: novel signaling molecules in Rhizobium-legume communications. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1387-1395. [PMID: 22835276 DOI: 10.1094/mpmi-03-12-0066-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oligogalacturonides are pectic fragments of the plant cell wall, whose signaling role has been described thus far during plant development and plant-pathogen interactions. In the present work, we evaluated the potential involvement of oligogalacturonides in the molecular communications between legumes and rhizobia during the establishment of nitrogen-fixing symbiosis. Oligogalacturonides with a degree of polymerization of 10 to 15 were found to trigger a rapid intracellular production of reactive oxygen species in Rhizobium leguminosarum bv. viciae 3841. Accumulation of H(2)O(2), detected by both 2',7'-dichlorodihydrofluorescein diacetate-based fluorescence and electron-dense deposits of cerium perhydroxides, was transient and did not affect bacterial cell viability, due to the prompt activation of the katG gene encoding a catalase. Calcium measurements carried out in R. leguminosarum transformed with the bioluminescent Ca(2+) reporter aequorin demonstrated the induction of a rapid and remarkable intracellular Ca(2+) increase in response to oligogalacturonides. When applied jointly with naringenin, oligogalacturonides effectively inhibited flavonoid-induced nod gene expression, indicating an antagonistic interplay between oligogalacturonides and inducing flavonoids in the early stages of plant root colonization. The above data suggest a novel role for oligogalacturonides as signaling molecules released in the rhizosphere in the initial rhizobium-legume interaction.
Collapse
|
17
|
Glyan’ko AK, Mitanova NB, Stepanov AV. Influence of environmental factors on the generation of nitric oxide in the roots of etiolated pea seedlings. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683812010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Saeki K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: a focus on two legume-rhizobium model systems. Cell Mol Life Sci 2011; 68:1327-39. [PMID: 21365276 PMCID: PMC11114668 DOI: 10.1007/s00018-011-0650-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The establishment and maintenance of rhizobium-legume symbioses require a sequence of highly regulated and coordinated events between the organisms. Although the interaction is mutually beneficial under nitrogen-limited conditions, it can resemble a pathogenic infection at some stages. Some host legumes mount defense reactions, including the production of reactive oxygen species (ROS) and defensin-like antimicrobial compounds. To subvert these host defenses, the infecting rhizobial cells can use measures to passively protect themselves and actively modulate host functions. This review first describes the establishment and maintenance of active nodules, as well as the external and endogenous attack and threat stages. Next, recent studies of ROS scavenging enzymes, the BacA protein originally found in Sinorhizobium meliloti, and the type III/IV secretion systems are discussed, with a focus on two legume-rhizobium model systems.
Collapse
Affiliation(s)
- Kazuhiko Saeki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoya Nishimachi, Nara, Japan.
| |
Collapse
|
19
|
Archetti M, Ubeda F, Fudenberg D, Green J, Pierce NE, Yu DW. Let the right one in: a microeconomic approach to partner choice in mutualisms. Am Nat 2010; 177:75-85. [PMID: 21091210 DOI: 10.1086/657622] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
One of the main problems impeding the evolution of cooperation is partner choice. When information is asymmetric (the quality of a potential partner is known only to himself), it may seem that partner choice is not possible without signaling. Many mutualisms, however, exist without signaling, and the mechanisms by which hosts might select the right partners are unclear. Here we propose a general mechanism of partner choice, "screening," that is similar to the economic theory of mechanism design. Imposing the appropriate costs and rewards may induce the informed individuals to screen themselves according to their types and therefore allow a noninformed individual to establish associations with the correct partners in the absence of signaling. Several types of biological symbioses are good candidates for screening, including bobtail squid, ant-plants, gut microbiomes, and many animal and plant species that produce reactive oxygen species. We describe a series of diagnostic tests for screening. Screening games can apply to the cases where by-products, partner fidelity feedback, or host sanctions do not apply, therefore explaining the evolution of mutualism in systems where it is impossible for potential symbionts to signal their cooperativeness beforehand and where the host does not punish symbiont misbehavior.
Collapse
Affiliation(s)
- Marco Archetti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|