1
|
Cell Immobilization Using Alginate-Based Beads as a Protective Technique against Stressful Conditions of Hydrolysates for 2G Ethanol Production. Polymers (Basel) 2022; 14:polym14122400. [PMID: 35745976 PMCID: PMC9230679 DOI: 10.3390/polym14122400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
The development of biorefineries brings the necessity of an efficient consumption of all sugars released from biomasses, including xylose. In addition, the presence of inhibitors in biomass hydrolysates is one of the main challenges in bioprocess feasibility. In this study, the application of Ca-alginate hybrid gels in the immobilization of xylose-consuming recombinant yeast was explored with the aim of improving the tolerance of inhibitors. The recombinant yeast Saccharomyces cerevisiae GSE16-T18SI.1 (T18) was immobilized in Ca-alginate and Ca-alginate–chitosan hybrid beads, and its performance on xylose fermentation was evaluated in terms of tolerance to different acetic acid concentrations (0–12 g/L) and repeated batches of crude sugarcane bagasse hemicellulose hydrolysate. The use of the hybrid gel improved yeast performance in the presence of 12 g/L of acetic acid, achieving 1.13 g/L/h of productivity and reaching 75% of the theoretical ethanol yield, with an improvement of 32% in the xylose consumption rate (1:1 Vbeads/Vmedium, 35 °C, 150 rpm and pH 5.2). The use of hybrid alginate–chitosan gel also led to better yeast performance at crude hydrolysate, yielding one more batch than the pure-alginate beads. These results demonstrate the potential of a hybrid gel as an approach that could increase 2G ethanol productivity and allow cell recycling for a longer period.
Collapse
|
2
|
Milessi TS, Perez CL, Zangirolami TC, Corradini FAS, Sandri JP, Foulquié-Moreno MR, Giordano RC, Thevelein JM, Giordano RLC. Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:85. [PMID: 32426034 PMCID: PMC7216711 DOI: 10.1186/s13068-020-01722-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The search for sustainable energy sources has become a worldwide issue, making the development of efficient biofuel production processes a priority. Immobilization of second-generation (2G) xylose-fermenting Saccharomyces cerevisiae strains is a promising approach to achieve economic viability of 2G bioethanol production from undetoxified hydrolysates through operation at high cell load and mitigation of inhibitor toxicity. In addition, the use of a fixed-bed reactor can contribute to establish an efficient process because of its distinct advantages, such as high conversion rate per weight of biocatalyst and reuse of biocatalyst. RESULTS This work assessed the influence of alginate entrapment on the tolerance of recombinant S. cerevisiae to acetic acid. Encapsulated GSE16-T18SI.1 (T18) yeast showed an outstanding performance in repeated batch fermentations with cell recycling in YPX medium supplemented with 8 g/L acetic acid (pH 5.2), achieving 10 cycles without significant loss of productivity. In the fixed-bed bioreactor, a high xylose fermentation rate with ethanol yield and productivity values of 0.38 gethanol/gsugars and 5.7 g/L/h, respectively were achieved in fermentations using undetoxified sugarcane bagasse hemicellulose hydrolysate, with and without medium recirculation. CONCLUSIONS The performance of recombinant strains developed for 2G ethanol production can be boosted strongly by cell immobilization in alginate gels. Yeast encapsulation allows conducting fermentations in repeated batch mode in fixed-bed bioreactors with high xylose assimilation rate and high ethanol productivity using undetoxified hemicellulose hydrolysate.
Collapse
Affiliation(s)
- Thais S. Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, 37500-903 Itajubá, MG Brazil
| | - Caroline L. Perez
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Teresa C. Zangirolami
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Felipe A. S. Corradini
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Juliana P. Sandri
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Maria R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Roberto C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP Brazil
| |
Collapse
|