1
|
Wagner T, Pfeifle H, Hildebrand G, Zhang Y. Production of a Cheese-Like Aroma via Fermentation of Plant Proteins and Coconut Oil with the Basidiomycetes Cyclocybe aegerita and Trametes versicolor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6544-6553. [PMID: 38484109 DOI: 10.1021/acs.jafc.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Cheese is one of the most common dairy products and is characterized by its complex aroma. However, in times of climate change and resource scarcity, the possibility to mimic the characteristic cheese-like aroma from plant-based sources is in demand to offer alternatives to cheese. Accordingly, the production of a natural cheese-like aroma via fermentation of four plant-based proteins and coconut oil with basidiomycetes has been addressed. Mixtures of soy and sunflower protein with coconut oil (15 g/L) have shown the formation of a cheese-like aroma after 72 and 56 h after fermentation with Cyclocybe aegerita and Trametes versicolor, respectively. Isovaleric acid, butanoic acid, ethyl butanoate, 1-octen-3-ol, and various ketones were identified as the key odorants. Similarities to typical cheeses were observed by the principal component analysis. Overall, the finding offered an approach to a sustainable production of a natural cheese-like aroma from a plant source, thus contributing to the development of cheese alternatives.
Collapse
Affiliation(s)
- Tim Wagner
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| | - Helena Pfeifle
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| | - Gabriel Hildebrand
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| | - Yanyan Zhang
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, Stuttgart 70599, Germany
| |
Collapse
|
2
|
Bilal M, Bagheri AR, Vilar DS, Aramesh N, Eguiluz KIB, Ferreira LFR, Ashraf SS, Iqbal HMN. Oxidoreductases as a versatile biocatalytic tool to tackle pollutants for clean environment – a review. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 2021. [DOI: 10.1002/jctb.6743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huaian 223003 China
| | | | - Débora S Vilar
- Graduate Program in Process Engineering Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Nahal Aramesh
- Department of Chemistry Yasouj University Yasouj Iran
| | - Katlin Ivon Barrios Eguiluz
- Graduate Program in Process Engineering Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP) Tiradentes University (UNIT) Av. Murilo Dantas, 300, Farolândia Aracaju‐Sergipe 49032‐490 Brazil
| | - Syed Salman Ashraf
- Department of Chemistry College of Arts and Sciences, Khalifa University Abu Dhabi United Arab Emirates
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey School of Engineering and Sciences Monterrey 64849 Mexico
| |
Collapse
|
3
|
|
4
|
Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020; 6:e03170. [PMID: 32095645 PMCID: PMC7033530 DOI: 10.1016/j.heliyon.2020.e03170] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/04/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Ligninolytic enzymes play a key role in degradation and detoxification of lignocellulosic waste in environment. The major ligninolytic enzymes are laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. The activities of these enzymes are enhanced by various mediators as well as some other enzymes (feruloyl esterase, aryl-alcohol oxidase, quinone reductases, lipases, catechol 2, 3-dioxygenase) to facilitate the process for degradation and detoxification of lignocellulosic waste in environment. The structurally laccase is isoenzymes with monomeric or dimeric and glycosylation levels (10–45%). This contains four copper ions of three different types. The enzyme catalyzes the overall reaction: 4 benzenediol + O2 to 4 benzosemiquinone + 2H2O. While, lignin peroxidase is a glycoprotein molecular mass of 38–46 kDa containing one mole of iron protoporphyrin IX per one mol of protein, catalyzes the H2O2 dependent oxidative depolymerization of lignin. The manganese peroxidase is a glycosylated heme protein with molecular mass of 40–50kDa. It depolymerizes the lignin molecule in the presence of manganese ion. The versatile peroxidase has broad range substrate sharing typical features of the manganese and lignin peroxidase families. Although ligninolytic enzymes have broad range of industrial application specially the degradation and detoxification of lignocellulosic waste discharged from various industrial activities, its large scale application is still limited due to lack of limited production. Further, the extremophilic properties of ligninolytic enzymes indicated their broad prospects in varied environmental conditions. Therefore it needs more extensive research for understanding its structure and mechanisms for broad range commercial applications.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
5
|
Gomes TG, Hadi SIIA, Costa Alves GS, Mendonça S, De Siqueira FG, Miller RNG. Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2510-2522. [PMID: 29498277 DOI: 10.1021/acs.jafc.7b05691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Jatropha curcas is an important oilseed plant, with considerable potential in the development of biodiesel. Although Jatropha seed cake, the byproduct of oil extraction, is a residue rich in nitrogen, phosphorus, potassium, and carbon, with high protein content suitable for application in animal feed, the presence of toxic phorbol esters limits its application in feed supplements and fertilizers. This review summarizes the current methods available for detoxification of this residue, based upon chemical, physical, biological, or combined processes. The advantages and disadvantages of each process are discussed, and future directions involving genomic and proteomic approaches for advancing our understanding of biodegradation processes involving microorganisms are highlighted.
Collapse
Affiliation(s)
- Taisa G Gomes
- Instituto de Ciências Biológicas, Departamento de Biologia Celular , Universidade de Brasília , Campus Universitário Darcy Ribeiro, Asa Norte , 70910-900 , Brasília , DF , Brazil
| | - Sámed I I A Hadi
- Universidade Federal de Minas Gerais , Instituto de Ciências Biológicas - ICB , Av. Pres. Antônio Carlos, 6627 , 31270-010 , Belo Horizonte , MG , Brazil
| | - Gabriel S Costa Alves
- Instituto de Ciências Biológicas, Departamento de Biologia Celular , Universidade de Brasília , Campus Universitário Darcy Ribeiro, Asa Norte , 70910-900 , Brasília , DF , Brazil
| | - Simone Mendonça
- Embrapa Agroenergia, STN-70297-400 , 70297-400 , Brasília , DF , Brazil
| | | | - Robert N G Miller
- Instituto de Ciências Biológicas, Departamento de Biologia Celular , Universidade de Brasília , Campus Universitário Darcy Ribeiro, Asa Norte , 70910-900 , Brasília , DF , Brazil
| |
Collapse
|
6
|
Vasina DV, Moiseenko KV, Fedorova TV, Tyazhelova TV. Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS One 2017; 12:e0173813. [PMID: 28301519 PMCID: PMC5354401 DOI: 10.1371/journal.pone.0173813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Ligninolytic heme peroxidases comprise an extensive family of enzymes, which production is characteristic for white-rot Basidiomycota. The majority of fungal heme peroxidases are encoded by multigene families that differentially express closely related proteins. Currently, there were very few attempts to characterize the complete multigene family of heme peroxidases in a single fungus. Here we are focusing on identification and characterization of peroxidase genes, which are transcribed and secreted by basidiomycete Trametes hirsuta 072, an efficient lignin degrader. The T. hirsuta genome contains 18 ligninolytic peroxidase genes encoding 9 putative lignin peroxidases (LiP), 7 putative short manganese peroxidases (MnP) and 2 putative versatile peroxidases (VP). Using ddPCR method we have quantified the absolute expression of the 18 peroxidase genes under different culture conditions and on different growth stages of basidiomycete. It was shown that only two genes (one MnP and one VP) were prevalently expressed as well as secreted into cultural broth under all conditions investigated. However their transcriptome and protein profiles differed in time depending on the effector used. The expression of other peroxidase genes revealed a significant variability, so one can propose the specific roles of these enzymes in fungal development and lifestyle.
Collapse
Affiliation(s)
- Daria V. Vasina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
| | - Konstantin V. Moiseenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
- * E-mail:
| | - Tatiana V. Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
| | - Tatiana V. Tyazhelova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, Russia
| |
Collapse
|
7
|
Mosunova OV, Vasina DV, Tyazhelova TV, Landesman EO, Koroleva OV. Preparation of protoplasts of the fungus Trametes hirsuta 072 and study of the effect of antioxidants on their formation and regeneration. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Continuous Decolorization of Acid Blue 62 Solution in an Enzyme Membrane Reactor. Appl Biochem Biotechnol 2015; 177:237-52. [PMID: 26245258 PMCID: PMC4549384 DOI: 10.1007/s12010-015-1741-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/30/2015] [Indexed: 11/15/2022]
Abstract
This paper focuses on using an enzyme membrane reactor (EMR) for the effective continuous decolorization of Acid Blue 62 (AB62). The following factors were considered for the effective use of Cerrena unicolor laccase immobilized in the EMR volume: the enzyme was stable in six successive runs in a batch reactor; no aeration was necessary; AB62 and the oxidized products were sorbed onto the membrane but were not rejected; and the enzyme was stable in the EMR system. It is obvious that any continuous process must be predictable, and thus, the objective was to verify the process model experimentally. For this reason, a proper isoenzyme kinetic equation was selected and the parameters were evaluated. The obtained kinetic parameters were used to plan processes and to verify their applicability to long-term AB62 decolorization, and a very good agreement between the calculated and the measured data was obtained. In the main designed continuous decolorization process, the conversion reached 98 % and was stable for 4 days. The membrane reactor with C. unicolor laccase appears to be very promising for AB62 decolorization.
Collapse
|
9
|
Retes-Pruneda JL, Davila-Vazquez G, Medina-Ramírez I, Chavez-Vela NA, Lozano-Alvarez JA, Alatriste-Mondragon F, Jauregui-Rincon J. High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods. ENVIRONMENTAL TECHNOLOGY 2014; 35:1773-1784. [PMID: 24956770 DOI: 10.1080/09593330.2014.882960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The goal of this research is to find a more effective treatment for tequila vinasses (TVs) with potential industrial application in order to comply with the Mexican environmental regulations. TVs are characterized by their high content of solids, high values of biochemical oxygen demand (BODs), chemical oxygen demand (COD), low pH and intense colour; thus, disposal of untreated TVs severely impacts the environment. Physicochemical and biological treatments, and a combination of both, were probed on the remediation of TVs. The use of alginate for the physicochemical treatment of TVs reduced BOD5 and COD values by 70.6% and 14.2%, respectively. Twenty white-rot fungi (WRF) strains were tested in TV-based solid media. Pleurotus ostreatus 7992 and Trametes trogii 8154 were selected due to their ability to grow on TV-based solid media. Ligninolytic enzymes' production was observed in liquid cultures of both fungi. Using the selected WRF for TVs' bioremediation, both COD and BOD5 were reduced by 88.7% and 89.7%, respectively. Applying sequential physicochemical and biological treatments, BOD5 and COD were reduced by 91.6% and 93.1%, respectively. Results showed that alginate and selected WRF have potential for the industrial treatment of TVs.
Collapse
|
10
|
Ivashechkin AA, Sergeeva YE, Lunin VV, Bogdan VI, Mysyakina IS, Feofilova EP. Influence of lignin and oxygen on the growth and the lipid formation of the fungus Lentinus tigrinus. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814030089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Klein OI, Kulikova NA, Konstantinov AI, Fedorova TV, Landesman EO, Koroleva OV. Transformation of humic substances of highly oxidized brown coal by basidiomycetes Trametes hirsuta and Trametes maxima. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813030101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|