1
|
Suppression of Methane Generation during Methanogenesis by Chemically Modified Humic Compounds. Antioxidants (Basel) 2020; 9:antiox9111140. [PMID: 33212824 PMCID: PMC7698265 DOI: 10.3390/antiox9111140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
The introduction of various concentrations of chemically modified humic compounds (HC) with different redox characteristics into the media with free and immobilized anaerobic consortia accumulating landfill gases was studied as approach to their functioning management. For this purpose, quinone (hydroquinone, naphthoquinone or methylhydroquinone) derivatives of HC were synthesized, which made it possible to vary the redox and antioxidant properties of HC as terminal electron acceptors in methanogenic systems. The highest acceptor properties were obtained with potassium humate modified by naphthoquinone. To control possible negative effect of HC on the cells of natural methanogenic consortia, different bioluminescent analytical methods were used. The addition of HC derivatives, enriched with quinonones, to nutrient media at concentrations above 1 g/L decreased the energetic status of cells and the efficiency of the methanogenesis. For the first time, the significant decrease in accumulation of biogas was reached as effect of synthetic HC derivatives, whereas both notable change of biogas composition towards increase in the CO2 content and decrease in CH4 were revealed. Thus, modification with quinones makes it possible to obtain low-potential HC derivatives with strongly pronounced acceptor properties, promising for inhibition of biogas synthesis by methanogenic communities.
Collapse
|
2
|
The strains of bioluminescent bacteria isolated from the White Sea finfishes: genera Photobacterium, Aliivibrio, Vibrio, Shewanella, and first luminous Kosakonia. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111895. [PMID: 32447192 DOI: 10.1016/j.jphotobiol.2020.111895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/22/2022]
Abstract
Bioluminescence is a spectacular feature of some prokaryotes. In the present work, we address the distribution of bioluminescence among bacteria isolated from the White Sea finfishes. Luminous bacteria are widely distributed throughout the World Ocean. Many strains have been isolated and described for tropical latitudes, while Nordic seas still remain quite a white spot in studying bioluminescence of bacteria. We describe the strains related to the two main genera of luminous bacteria, Photobacterium and Aliivibrio, as well as Shewanella and Vibrio. They are related to families Vibrionaceae and Shewanellaceae of the Gammaproteobacteria class. Here, we at the first time, report the bioluminescence of the Enterobacteriaceae Kosakonia cowanii. Moreover, we applied the polyphasic approach to identify and describe the isolated microorganisms. The data on sequencing, diversity of cell fine structure, and light emission spectra at room temperature on the solid medium are discussed. The bacteria are characterized by features in their light emission spectra. It may reflect possible molecular mechanisms of bioluminescence as well as features of bacterial composition. The obtained data expands the existing body of knowledge about the bioluminescence spread among the bacteria of Nordic latitudes and provides complex information that is crucial for their precise identification.
Collapse
|
3
|
Vigués N, Pujol-Vila F, Macanás J, Muñoz M, Muñoz-Berbel X, Mas J. Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation. Talanta 2020; 206:120192. [PMID: 31514850 DOI: 10.1016/j.talanta.2019.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
In biosensors fabrication, entrapment in polymeric matrices allows efficient immobilization of the biorecognition elements without compromising their structure and activity. When considering living cells, the biocompatibility of both the matrix and the polymerization procedure are additional critical factors. Bio-polymeric gels (e.g. alginate) are biocompatible and polymerize under mild conditions, but they have poor stability. Most synthetic polymers (e.g. PVA), on the other hand, present improved stability at the expense of complex protocols involving chemical/physical treatments that decrease their biological compatibility. In an attempt to explore new solutions to this problem we have developed a procedure for the immobilization of bacterial cells in polyethersulfone (PES) using phase separation. The technology has been tested successfully in the construction of a bacterial biosensor for toxicity assessment. Biosensors were coated with a 300 μm bacteria-containing PES membrane, using non-solvent induced phase separation (membrane thickness ≈ 300 μm). With this method, up to 2.3 × 106 cells were immobilized in the electrode surface with an entrapment efficiency of 8.2%, without compromising cell integrity or viability. Biosensing was performed electrochemically through ferricyanide respirometry, with metabolically-active entrapped bacteria reducing ferricyanide in the presence of glucose. PES biosensors showed good stability and reusability during dry frozen storage for up to 1 month. The analytical performance of the sensors was assessed carrying out a toxicity assay in which 3,5-dichlorophenol (DCP) was used as a model toxic compound. The biosensor provided a concentration-dependent response to DCP with half-maximal effective concentration (EC50) of 9.2 ppm, well in agreement with reported values. This entrapment methodology is susceptible of mass production and allows easy and repetitive production of robust and sensitive bacterial biosensors.
Collapse
Affiliation(s)
- N Vigués
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - F Pujol-Vila
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - J Macanás
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Spain
| | - M Muñoz
- Department of Chemistry, Universitat Autònoma de Barcelona, UAB, Spain
| | - X Muñoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona, Spain
| | - J Mas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Senko O, Stepanov N, Maslova O, Akhundov R, Ismailov A, Efremenko E. Immobilized Luminescent Bacteria for the Detection of Mycotoxins under Discrete and Flow-Through Conditions. BIOSENSORS 2019; 9:E63. [PMID: 31137498 PMCID: PMC6627987 DOI: 10.3390/bios9020063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
A biosensitive element in the form of bacterial Photobacterium phosphoreum cells immobilized in poly(vinyl alcohol) cryogel was tested for the determination of different mycotoxins under discrete and flow-through analysis conditions. The immobilized bioluminescent cells made it possible to quantify the presence of Ochratoxin A, Sterigmatocystin, Zearalenone, and Deoxynivalenon in aqueous media in a wide range of their concentrations (0.017-56 mg/L, 0.010-33 mg/L, 0.009-14 mg/L, and 0.026-177 mg/L, respectively) via measuring the quenching of cell luminescence. The flow conditions allowed the analysis sensitivity to be improved by an order of magnitude in terms of detected concentrations. Using the immobilized luminescent bacterial cells, we have shown the possibility of evaluating the efficiency of the mycotoxins' hydrolysis under the action of enzymes. In this way, a 94 ± 4.5% efficiency of Zearalenone hydrolysis with hexahistidine-containing organophosphorus hydrolase for 1h-long treatment of the mycotoxin solution (100 mg/L) was shown.
Collapse
Affiliation(s)
- Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, 119334 Moscow, Russia.
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, 119334 Moscow, Russia.
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Rashid Akhundov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Anvar Ismailov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, 119334 Moscow, Russia.
| |
Collapse
|
5
|
Aslanli A, Lyagin I, Efremenko E. Novel approach to quorum quenching: rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase. Biol Chem 2019; 399:869-879. [PMID: 29870390 DOI: 10.1515/hsz-2018-0162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 11/15/2022]
Abstract
N-acyl homoserine lactones (AHLs) are quorum sensing (QS) signal molecules used by most Gram-negative pathogenic bacteria. In this article the lactonase activity of the preparations based on hexahistidine-tagged organophosphorus hydrolase (His6-OPH) towards AHLs was studied. Initially, three of the most interesting β-lactam antibiotics were selected from seven that were trialed during molecular docking to His6-OPH. Combinations of antibiotics (meropenem, imipenem, ceftriaxone) and His6-OPH taken in the native form or in the form of non-covalent enzyme-polyelectrolyte complexes (EPCs) with poly(glutamic acid) or poly(aspartic acid) were obtained and investigated. The lactonase activity of the preparations was investigated under different physical-chemical conditions in the hydrolysis of AHLs [N-butyryl-D,L-homoserine lactone, N-(3-oxooctanoyl)-D,L-homoserine lactone, N-(3-oxododecanoyl)-L-homoserine lactone]. An increased efficiency of catalytic action and stability of the lactonase activity of His6-OPH was shown for its complexes with antibiotics and was confirmed in trials with bacterial strains. The broadening of the catalytic action of the enzyme against AHLs was revealed in the presence of the meropenem. Results of molecular docking of AHLs to the surface of the His6-OPH dimer in the presence of antibiotics allowed proposing the mechanism of such interference based on a steric repulsion of the carbon chain of hydrolyzed AHLs by the antibiotics bounded to the enzyme surface.
Collapse
Affiliation(s)
- Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
“Deceived” Concentrated Immobilized Cells as Biocatalyst for Intensive Bacterial Cellulose Production from Various Sources. Catalysts 2018. [DOI: 10.3390/catal8010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A new biocatalyst in the form of Komagataeibacter xylinum B-12429 cells immobilized in poly(vinyl alcohol) cryogel for production of bacterial cellulose was demonstrated. Normally, the increased bacteria concentration causes an enlarged bacterial cellulose synthesis while cells push the polysaccharide out to pack themselves into this polymer and go into a stasis. Immobilization of cells into the poly(vinyl alcohol) cryogel allowed “deceiving” them: bacteria producing cellulose pushed it out, which further passed through the pores of cryogel matrix and was accumulated in the medium while not covering the cells; hence, the latter were deprived of a possible transition to inactivity and worked on the synthesis of bacterial cellulose even more actively. The repeated use of immobilized cells retaining 100% of their metabolic activity for at least 10 working cycles (60 days) was performed. The immobilized cells produce bacterial cellulose with crystallinity and porosity similar to polysaccharide of free cells, but having improved stiffness and tensile strength. Various media containing sugars and glycerol, based on hydrolysates of renewable biomass sources (aspen, Jerusalem artichoke, rice straw, microalgae) were successfully applied for bacterial cellulose production by immobilized cells, and the level of polysaccharide accumulation was 1.3–1.8-times greater than suspended cells could produce.
Collapse
|
7
|
One-stage immobilization of the microalga Porphyridium purpureum using a biocompatible silica precursor and study of the fluorescence of its pigments. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:75-85. [PMID: 28477084 DOI: 10.1007/s00249-017-1213-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/16/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
Abstract
The biocompatible silica precursor tetrakis(2-hydroxyethyl)orthosilicate with ethylene glycol residues was used instead of the common alcohol-containing tetraethoxysilane for the first time to prepare a biorecognition element by entrapping the marine microalga Porphyridium purpureum into a silica matrix by a one-stage sol-gel procedure at conditions (pH, ionic strength, and temperature) appropriate for living cells. We show that the microalga immobilized in this way fully maintains its viability and functionality. We furthermore show that the silica matrix had a stabilizing effect, providing microalgal survival and functionality at increased temperature. The high optical transparency of the silica matrix allowed us to study the optical properties of Porphyridium purpureum thoroughly. When irradiated by a laser, intense fluorescence of chlorophyll-a and phycoerythrin of the photosynthetic system was observed. The characteristics of this fluorescence differed notably from that observed with P. purpureum in suspension before immobilization; possible reasons for this and an underlying mechanism are discussed.
Collapse
|
8
|
Aleskerova LE, Alenina KA, Efremenko EN, Ismailov AD. The factor stabilizing the bioluminescence of PVA-immobilized photobacteria. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717020047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Efremenko EN, Maslova OV, Kholstov AV, Senko OV, Ismailov AD. Biosensitive element in the form of immobilized luminescent photobacteria for detecting ecotoxicants in aqueous flow-through systems. LUMINESCENCE 2016; 31:1283-9. [DOI: 10.1002/bio.3104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
|