1
|
Singh AK, Iqbal HMN, Cardullo N, Muccilli V, Fern'andez-Lucas J, Schmidt JE, Jesionowski T, Bilal M. Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology-A review. Int J Biol Macromol 2023:124968. [PMID: 37217044 DOI: 10.1016/j.ijbiomac.2023.124968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/22/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Lignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization of lignin, oxidative cleavage of xenobiotics and phenolics. LMEs implementation in the biotechnological and industrial sectors has sparked significant attention, although its potential future applications remain underexploited. To understand the mechanism of LMEs in sustainable pollution mitigation, several studies have been undertaken to assess the feasibility of LMEs in correlating to diverse pollutants for binding and intermolecular interactions at the molecular level. However, further investigation is required to fully comprehend the underlying mechanism. In this review we presented the key structural and functional features of LMEs, including the computational aspects, as well as the advanced applications in biotechnology and industrial research. Furthermore, concluding remarks and a look ahead, the use of LMEs coupled with computational frameworks, built upon artificial intelligence (AI) and machine learning (ML), has been emphasized as a recent milestone in environmental research.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Jesús Fern'andez-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanizaci'on El Bosque, 28670 Villaviciosa de Od'on, Spain; Grupo de Investigaci'on en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jens Ejbye Schmidt
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Odense, Denmark
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Sánchez-Quitian ZA, Quitian-Romero JC, Moreno-Buitrago AT, Montoya Barreto S, Sanjuan T, Ortiz-Rosas JP. Isolation and characterization of wood-decomposing basidiomycetes from the Andean Forest in Boyacá, Colombia. Braz J Microbiol 2022; 53:1425-1437. [PMID: 35446011 PMCID: PMC9433503 DOI: 10.1007/s42770-022-00760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 04/13/2022] [Indexed: 11/02/2022] Open
Abstract
This study explores the biotechnological potential of lignocellulolytic fungi collected in an oak forest. Fungal collections were obtained from natural reserves located in Boyacá-Colombia, ranging from 2700 to 3000 m.a.s.l. Twenty-three strains were isolated on malt agar, molecular characterization was performed, and ligninolytic and cellulolytic enzymatic activities were screened. Several white-rot fungi of biotechnological importance were identified as follows: Trametes sp., Trametes versicolor, Trametes villosa, Pycnoporus sanguineus, Bjerkandera adjusta, Lentinula boryana, Panus conchatus, Antrodia neotropica, Brunneoporus malicola, Laetiporus gilbertsonii, Stereum sp., Ganoderma sp., and Dichomitus sp. The strains T. versicolor 0554 and 0583, T. villosa 0562, and B. adusta 0556 showed the highest response in the qualitative enzymatic assays. These strains were used to determine their ability to decolorate the dyes aniline blue and Congo red, and it was found that T. villosa 0562 reached a level of decolorization close to 90% after 48 h of submerged culture. The fungal strains obtained here could offer alternatives to develop a process to accomplish sustainable development objectives.
Collapse
|
3
|
Xiao P, Wu D, Wang J. Bibliometric analysis of global research on white rot fungi biotechnology for environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1491-1507. [PMID: 34355311 PMCID: PMC8341834 DOI: 10.1007/s11356-021-15787-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In recent years, white rot fungi (WRFs) have received tremendous attention as a biotechnological tool for environmental pollution control. In order to systematically and comprehensively describe the progress, trends, and hotspots of WRF biotechnology in the field of environmental pollution control, the 3967 related publications from 2003 to 2020 were collected from Web of Science Core Collection database, and the bibliometric characteristics including publication output, country, institution, journal, author, citation frequency, h-index, and research focus were evaluated by using Excel 2007, CiteSpace V, and VOSviewer. The results indicated that the number of research publications increased rapidly before 2009, but after that, the number of publications fluctuated in a certain range. China and USA were the most productive countries and the most active country in international cooperation. In this field, most authors tend to cooperate within a small group. The journal and subject category with the largest number of publications are "International Biodeterioration & Biodegradation" and "Biotechnology Applied Microbiology", respectively. The analysis of high-frequency keywords revealed that "laccase", "biodegradation", "decolorization", and "Phanerochaete chrysosporium" were the most cited terms among all publications. The pretreatment of biomass waste, decolorization of dye wastewater, and bioremediation of polluted environment are the key research directions of WRF biotechnology. Finally, the frontier topics and active authors in this research field were identified using burst detection. We believe that this bibliometric study provides a comprehensive and systematic overview and promoted the future cooperative research and knowledge exchange in this field of WRF biotechnology for environmental applications.
Collapse
Affiliation(s)
- Pengfei Xiao
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China.
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Sosa-Martínez JD, Balagurusamy N, Montañez J, Peralta RA, Moreira RDFPM, Bracht A, Peralta RM, Morales-Oyervides L. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123254. [PMID: 32947692 DOI: 10.1016/j.jhazmat.2020.123254] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to provide information that contributes to establishing environmental-friendly methods for synthetic dyes' degradation. The potential decolorization capacity of the crude enzymatic extract produced by Phanerochaete chrysosporium CDBB 686 using corncob as a substrate was evaluated on seven different dyes. Critical variables affecting the in-vitro decolorization process were further evaluated and results were compared with an in-vivo decolorization system. Decolorization with enzymatic extracts presented advantages over the in-vivo system (higher or similar decolorization within a shorter period). Under improved in-vitro process conditions, the dyes with higher decolorization were: Congo red (41.84 %), Poly R-478 (56.86 %), Methyl green (69.79 %). Attempts were made to confirm the transformation of the dyes after the in-vitro process as well as to establish a molecular basis for interpreting changes in toxicity along with the degradation process. In-vitro degradation products of Methyl green presented a toxicity reduction compared with the original dye; however, increased toxicity was found for Congo red degradation products when compared with the original dyes. Thus, for future applications, it is crucial to evaluate the mechanisms of biodegradation of each target synthetic dye as well as the toxicity of the products obtained after enzymatic oxidation.
Collapse
Affiliation(s)
- Jazel Doménica Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, LibramientoTorreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | | | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Rosane Marina Peralta
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
5
|
Ligninolytic Enzyme Production and Decolorization Capacity of Synthetic Dyes by Saprotrophic White Rot, Brown Rot, and Litter Decomposing Basidiomycetes. J Fungi (Basel) 2020; 6:jof6040301. [PMID: 33228232 PMCID: PMC7711621 DOI: 10.3390/jof6040301] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023] Open
Abstract
An extensive screening of saprotrophic Basidiomycetes causing white rot (WR), brown rot (BR), or litter decomposition (LD) for the production of laccase and Mn-peroxidase (MnP) and decolorization of the synthetic dyes Orange G and Remazol Brilliant Blue R (RBBR) was performed. The study considered in total 150 strains belonging to 77 species. The aim of this work was to compare the decolorization and ligninolytic capacity among different ecophysiological and taxonomic groups of Basidiomycetes. WR strains decolorized both dyes most efficiently; high decolorization capacity was also found in some LD fungi. The enzyme production was recorded in all three ecophysiology groups, but to a different extent. All WR and LD fungi produced laccase, and the majority of them also produced MnP. The strains belonging to BR lacked decolorization capabilities. None of them produced MnP and the production of laccase was either very low or absent. The most efficient decolorization of both dyes and the highest laccase production was found among the members of the orders Polyporales and Agaricales. The strains with high MnP activity occurred across almost all fungal orders (Polyporales, Agaricales, Hymenochaetales, and Russulales). Synthetic dye decolorization by fungal strains was clearly related to their production of ligninolytic enzymes and both properties were determined by the interaction of their ecophysiology and taxonomy, with a more relevant role of ecophysiology. Our screening revealed 12 strains with high decolorization capacity (9 WR and 3 LD), which could be promising for further biotechnological utilization.
Collapse
|
6
|
Fernandes CD, Nascimento VRS, Meneses DB, Vilar DS, Torres NH, Leite MS, Vega Baudrit JR, Bilal M, Iqbal HMN, Bharagava RN, Egues SM, Romanholo Ferreira LF. Fungal biosynthesis of lignin-modifying enzymes from pulp wash and Luffa cylindrica for azo dye RB5 biodecolorization using modeling by response surface methodology and artificial neural network. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123094. [PMID: 32534401 DOI: 10.1016/j.jhazmat.2020.123094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
This study demonstrates the evaluation between the artificial neural network technique coupled to the genetic algorithm (ANN-GA) and the response surface methodology (RSM) for prediction of Reactive Black 5 (RB5) decolorization by crude enzyme from Pleurotus. sajor-caju. Fungal lignin-modifying enzymes (FLME) were synthesized using pulp wash (PW) as an inducing substrate, and L. cylindrica (L.C) for cell immobilization. When grown in PW, the fungus showed higher Lac activity (126.5 IU. mL-1), whereas when immobilized a higher MnP activity was achieved (22.79 IU. mL-1), but both methods were capable of decolorizing the dye in about 89.4 % and 75 %, respectively. This indicates applicability of PW as an alternative substrate for FLME induction and viability of immobilization for MnP synthesis. For RB5 decolorization, the action of the crude enzyme extract was considered as a function of pH, dye concentration, temperature, and reaction time. The models are well adjusted to predict the efficiency of biodecolorization, with no statistical difference between ANN-GA and RSM, which indicates potential for green enzymes prospecting application in bioprocess industry.
Collapse
Affiliation(s)
- Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - Victor Ruan Silva Nascimento
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Diego Batista Meneses
- National Nanotechnology Laboratory, National Center for High Technology, 10109, Pavas, San José, Costa Rica
| | - Débora S Vilar
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Nádia Hortense Torres
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - Manuela Souza Leite
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - José Roberto Vega Baudrit
- National Nanotechnology Laboratory, National Center for High Technology, 10109, Pavas, San José, Costa Rica; Laboratory of Polymer Science and Technology, School of Chemistry, Universidad Nacional, Campus Omar Dengo, 86-3000, Heredia, Costa Rica
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Silvia Maria Egues
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| |
Collapse
|
7
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
8
|
Role of the antioxidant defense system during the production of lignocellulolytic enzymes by fungi. Int Microbiol 2018; 22:255-264. [PMID: 30810986 DOI: 10.1007/s10123-018-00045-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Fungi are used for the production of several compounds and the efficiency of biotechnological processes is directly related to the metabolic activity of these microorganisms. The reactions catalyzed by lignocellulolytic enzymes are oxidative and generate reactive oxygen species (ROS). Excess of ROS can cause serious damages to cells, including cell death. Thus, the objective of this work was to evaluate the lignocellulolytic enzymes produced by Pleurotus sajor-caju CCB020, Phanerochaete chrysosporium ATCC 28326, Trichoderma reesei RUT-C30, and Aspergillus niger IZ-9 grown in sugarcane bagasse and two yeast extract (YE) concentrations and characterize the antioxidant defense system of fungal cells by the activities of superoxide dismutase (SOD) and catalase (CAT). Pleurotus sajor-caju exhibited the highest activities of laccase and peroxidase in sugarcane bagasse with 2.6 g of YE and an increased activity of manganese peroxidase in sugarcane bagasse with 1.3 g of YE was observed. However, P. chrysosporium showed the highest activities of exoglucanase and endoglucanase in sugarcane bagasse with 1.3 g of YE. Lipid peroxidation and variations in SOD and CAT activities were observed during the production of lignocellulolytic enzymes and depending on the YE concentrations. The antioxidant defense system was induced in response to the oxidative stress caused by imbalances between the production and the detoxification of ROS.
Collapse
|
9
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Developments in support materials for immobilization of oxidoreductases: A comprehensive review. Adv Colloid Interface Sci 2018; 258:1-20. [PMID: 30075852 DOI: 10.1016/j.cis.2018.07.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 12/07/2022]
Abstract
Bioremediation, a biologically mediated transformation or degradation of persistent chemicals into nonhazardous or less-hazardous substances, has been recognized as a key strategy to control levels of pollutants in water and soils. The use of enzymes, notably oxidoreductases such as laccases, tyrosinases, various oxygenases, aromatic dioxygenases, and different peroxidases (all of EC class 1) is receiving significant research attention in this regard. It should be stated that immobilization is emphasized as a powerful tool for enhancement of enzyme activity and stability as well as for protection of the enzyme proteins against negative effects of harsh reaction conditions. As proper selection of support materials for immobilization and their performance is overlooked when it comes to comparing performance of immobilized enzyme in academic studies, this review summarizes the current state of knowledge regarding the materials used for enzyme immobilization of these oxidoreductase enzymes for environmental applications. In the presented study, thorough physicochemical characteristics of the support materials was presented. Moreover, various types of reactions and notably operational modes of enzymatic processes for biodegradation of harmful pollutants are summarized, and future trends in use of immobilized oxidoreductases for environmental applications are discussed. Our goal is to provide an improved foundation on which new technological advancements can be made to achieve efficient enzyme-assisted bioremediation.
Collapse
|