1
|
Ranjit S, Deblais L, Poelstra JW, Bhandari M, Rotondo F, Scaria J, Miller SA, Rajashekara G. In vitro, in planta, and comparative genomic analyses of Pseudomonas syringae pv. syringae strains of pepper ( Capsicum annuum var. annuum). Microbiol Spectr 2024; 12:e0006424. [PMID: 38712940 PMCID: PMC11237606 DOI: 10.1128/spectrum.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Pseudomonas syringae pv. syringae (Pss) is an emerging phytopathogen that causes Pseudomonas leaf spot (PLS) disease in pepper plants. Pss can cause serious economic damage to pepper production, yet very little is known about the virulence factors carried by Pss that cause disease in pepper seedlings. In this study, Pss strains isolated from pepper plants showing PLS symptoms in Ohio between 2013 and 2021 (n = 16) showed varying degrees of virulence (Pss populations and disease symptoms on leaves) on 6-week-old pepper seedlings. In vitro studies assessing growth in nutrient-limited conditions, biofilm production, and motility also showed varying degrees of virulence, but in vitro and in planta variation in virulence between Pss strains did not correlate. Comparative whole-genome sequencing studies identified notable virulence genes including 30 biofilm genes, 87 motility genes, and 106 secretion system genes. Additionally, a total of 27 antimicrobial resistance genes were found. A multivariate correlation analysis and Scoary analysis based on variation in gene content (n = 812 variable genes) and single nucleotide polymorphisms within virulence genes identified no significant correlations with disease severity, likely due to our limited sample size. In summary, our study explored the virulence and antimicrobial gene content of Pss in pepper seedlings as a first step toward understanding the virulence and pathogenicity of Pss in pepper seedlings. Further studies with additional pepper Pss strains will facilitate defining genes in Pss that correlate with its virulence in pepper seedlings, which can facilitate the development of effective measures to control Pss in pepper and other related P. syringae pathovars. IMPORTANCE Pseudomonas leaf spot (PLS) caused by Pseudomonas syringae pv. syringae (Pss) causes significant losses to the pepper industry. Highly virulent Pss strains under optimal environmental conditions (cool-moderate temperatures, high moisture) can cause severe necrotic lesions on pepper leaves that consequently can decrease pepper yield if the disease persists. Hence, it is important to understand the virulence mechanisms of Pss to be able to effectively control PLS in peppers. In our study, in vitro, in planta, and whole-genome sequence analyses were conducted to better understand the virulence and pathogenicity characteristics of Pss strains in peppers. Our findings fill a knowledge gap regarding potential virulence and pathogenicity characteristics of Pss in peppers, including virulence and antimicrobial gene content. Our study helps pave a path to further identify the role of specific virulence genes in causing disease in peppers, which can have implications in developing strategies to effectively control PLS in peppers.
Collapse
Affiliation(s)
- Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | | | - Menuka Bhandari
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Francesca Rotondo
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | - Joy Scaria
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sally A. Miller
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
2
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
3
|
Carezzano ME, Paletti Rovey MF, Cappellari LDR, Gallarato LA, Bogino P, Oliva MDLM, Giordano W. Biofilm-Forming Ability of Phytopathogenic Bacteria: A Review of its Involvement in Plant Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112207. [PMID: 37299186 DOI: 10.3390/plants12112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Phytopathogenic bacteria not only affect crop yield and quality but also the environment. Understanding the mechanisms involved in their survival is essential to develop new strategies to control plant disease. One such mechanism is the formation of biofilms; i.e., microbial communities within a three-dimensional structure that offers adaptive advantages, such as protection against unfavorable environmental conditions. Biofilm-producing phytopathogenic bacteria are difficult to manage. They colonize the intercellular spaces and the vascular system of the host plants and cause a wide range of symptoms such as necrosis, wilting, leaf spots, blight, soft rot, and hyperplasia. This review summarizes up-to-date information about saline and drought stress in plants (abiotic stress) and then goes on to focus on the biotic stress produced by biofilm-forming phytopathogenic bacteria, which are responsible for serious disease in many crops. Their characteristics, pathogenesis, virulence factors, systems of cellular communication, and the molecules implicated in the regulation of these processes are all covered.
Collapse
Affiliation(s)
- María Evangelina Carezzano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - María Fernanda Paletti Rovey
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Lorena Del Rosario Cappellari
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| | | | - Pablo Bogino
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| | - María de Las Mercedes Oliva
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Microbiología e Inmunología, UNRC, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Walter Giordano
- Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Córdoba X5804BYA, Argentina
- Departamento de Biología Molecular; Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Córdoba X5804BYA, Argentina
| |
Collapse
|
4
|
McMillan HM, Zebell SG, Ristaino JB, Dong X, Kuehn MJ. Protective plant immune responses are elicited by bacterial outer membrane vesicles. Cell Rep 2021; 34:108645. [PMID: 33472073 PMCID: PMC8158063 DOI: 10.1016/j.celrep.2020.108645] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and are exploited as vaccines. However, little work has focused on the interactions of OMVs with plant hosts. Here, we report that OMVs from Pseudomonas syringae and P. fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMV-mediated immunomodulatory activity from these species displayed different sensitivity to biochemical stressors, reflecting differences in OMV content. Importantly, OMV-mediated plant responses are distinct from those triggered by conserved bacterial epitopes or effector molecules alone. Our study shows that OMV-induced protective immune responses are independent of the T3SS and protein, but that OMV-mediated seedling growth inhibition largely depends on proteinaceous components. OMVs provide a unique opportunity to understand the interplay between virulence and host response strategies and add a new dimension to consider in host-microbe interactions. The role that bacterial outer membrane vesicles (OMVs) play in plant-microbe interactions is poorly characterized. McMillan et al. show that OMVs elicit plant immune responses that protect against pathogens. This study also reveals a use for OMVs as tools to probe the plant immune system.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Sophia G Zebell
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Meta J Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Biochemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|