1
|
Ao TJ, Liu CG, Sun ZY, Zhao XQ, Tang YQ, Bai FW. Anaerobic digestion integrated with microbial electrolysis cell to enhance biogas production and upgrading in situ. Biotechnol Adv 2024; 73:108372. [PMID: 38714276 DOI: 10.1016/j.biotechadv.2024.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic digestion (AD) is an effective and applicable technology for treating organic wastes to recover bioenergy, but it is limited by various drawbacks, such as long start-up time for establishing a stable process, the toxicity of accumulated volatile fatty acids and ammonia nitrogen to methanogens resulting in extremely low biogas productivities, and a large amount of impurities in biogas for upgrading thereafter with high cost. Microbial electrolysis cell (MEC) is a device developed for electrosynthesis from organic wastes by electroactive microorganisms, but MEC alone is not practical for production at large scales. When AD is integrated with MEC, not only can biogas production be enhanced substantially, but also upgrading of the biogas product performed in situ. In this critical review, the state-of-the-art progress in developing AD-MEC systems is commented, and fundamentals underlying methanogenesis and bioelectrochemical reactions, technological innovations with electrode materials and configurations, designs and applications of AD-MEC systems, and strategies for their enhancement, such as driving the MEC device by electricity that is generated by burning the biogas to improve their energy efficiencies, are specifically addressed. Moreover, perspectives and challenges for the scale up of AD-MEC systems are highlighted for in-depth studies in the future to further improve their performance.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhao-Yong Sun
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yue-Qin Tang
- College of Architecture & Environment, Sichuan University, Chengdu 610000, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Gizewski J, V D Sande L, Holtmann D. Contribution of electrobiotechnology to sustainable development goals. Trends Biotechnol 2023; 41:1106-1108. [PMID: 36959083 DOI: 10.1016/j.tibtech.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
The UN Sustainable Development Goals (SDGs) are 17 interlinked goals designed to be a 'shared blueprint for peace and prosperity for people and the planet, now and into the future'. Therefore, global efforts should focus on achieving these. Herein, we discuss the contribution of electrobiotechnology to the realization of the SDGs.
Collapse
Affiliation(s)
- Jakub Gizewski
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Lisa V D Sande
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany.
| |
Collapse
|
3
|
Cui W, Luo H, Liu G. Efficient hydrogen production in single-chamber microbial electrolysis cell with a fermentable substrate under hyperalkaline conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:173-183. [PMID: 37660630 DOI: 10.1016/j.wasman.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Hydrogen production from food waste is of great significance for energy conversion and pollution control. The aim of this study was to investigate the glucose fermentation from food waste and hydrogen (H2) production in the single-chamber microbial electrolysis cell (MEC) under hyperalkaline conditions. Single-chamber MECs were tested with 1 g/L glucose as substrate under different pH values (i.e., 7.0, 9.5, and 11.2) and applied voltages (i.e., 0.8, 1.2, and 1.6 V). With pH increase from 7.0 to 11.2, H2 production with methanogenesis inhibition was significantly improved in the MEC. At pH of 11.2, the maximum current density reached 180 ± 9 A/m3 with the H2 purity of 93.3 ± 1.2% and average H2 yield of 7.72 ± 0.23 mol H2/ mol glucose under 1.6 V. Acetate from glucose fermentation was the largest electron sink within 12 h. Methanobacterium alcaliphilum dominated the archaeal communities with the relative abundance of > 99.0% in the cathodic biofilms. The microbial communities and mcr A gene copy numbers analyses showed that high pH enhanced the acetate production from glucose fermentation, inhibited syntrophic acetate-oxidizing with hydrogenotrophic methanogenesis in the anodic biofilms, and inhibited hydrogenotrophic methanogenesis in the cathodic biofilms. Our results of hyperalkaline conditions provide a feasible way to harvest H2 efficiently from fermentable substrates in the single-chamber MEC.
Collapse
Affiliation(s)
- Wanjun Cui
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Fuchs W, Rachbauer L, Rittmann SKMR, Bochmann G, Ribitsch D, Steger F. Eight Up-Coming Biotech Tools to Combat Climate Crisis. Microorganisms 2023; 11:1514. [PMID: 37375016 DOI: 10.3390/microorganisms11061514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Biotechnology has a high potential to substantially contribute to a low-carbon society. Several green processes are already well established, utilizing the unique capacity of living cells or their instruments. Beyond that, the authors believe that there are new biotechnological procedures in the pipeline which have the momentum to add to this ongoing change in our economy. Eight promising biotechnology tools were selected by the authors as potentially impactful game changers: (i) the Wood-Ljungdahl pathway, (ii) carbonic anhydrase, (iii) cutinase, (iv) methanogens, (v) electro-microbiology, (vi) hydrogenase, (vii) cellulosome and, (viii) nitrogenase. Some of them are fairly new and are explored predominantly in science labs. Others have been around for decades, however, with new scientific groundwork that may rigorously expand their roles. In the current paper, the authors summarize the latest state of research on these eight selected tools and the status of their practical implementation. We bring forward our arguments on why we consider these processes real game changers.
Collapse
Affiliation(s)
- Werner Fuchs
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Lydia Rachbauer
- Lawrence Berkeley National Laboratory, Deconstruction Division at the Joint Bioenergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria
| | - Günther Bochmann
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| | - Doris Ribitsch
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Franziska Steger
- Department IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria
| |
Collapse
|
5
|
Zhuravleva E, Kovalev A, Kovalev D, Kotova I, Shekhurdina S, Laikova A, Krasnovsky A, Pygamov T, Vivekanand V, Li L, He C, Litti Y. Does carbon cloth really improve thermophilic anaerobic digestion performance on a larger scale? focusing on statistical analysis and microbial community dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118124. [PMID: 37172349 DOI: 10.1016/j.jenvman.2023.118124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023]
Abstract
Currently, the phenomenon of direct interspecies electron transfer (DIET) is of great interest in the technology of anaerobic digestion (AD) due to potential performance benefits. However, the conditions for the occurrence of DIET and its limits on improving AD under conditions close to real have not been studied enough. This research is concentrated on the effect of conductive carbon cloth (R3), in comparison with a dielectric fiberglass cloth (R2) and control (R1), on the AD performance in large (90 L) thermophilic reactors, fed with a mixture of simulated organic fraction of municipal solid waste and sewage sludge. While organic loading rate (OLR) was gradually increased from 2.4 to 8.66 kg VS/(m3 day), a statistically significant (p < 0.05) difference in biogas production was observed between R1 and both R2 and R3. However, at a maximum OLR of 12.12 kg VS/(m3 day) in R3, an increase in biogas production (p < 0.05) was observed both compared to R1 (by 8.97%) and R2 (by 4.24%). The content of volatile fatty acids in R3 as a whole was the lowest, especially at the maximum OLR. Biofilm on carbon cloth was rich in syntrophic microorganisms of the genera Tepidanaerobacter, as well as Defluviitoga, capable of DIET in mixed cultures with Methanothrix, which was the most abundant methanogen in biofilm. Suspended Bifidobacterium, Fervidobacterium and Anaerobaculum were negatively affected, while Defluviitoga, Methanothermobacter and Methanosarcina, on the contrary, were positively affected by the increase in OLR and showed, respectively, a negative and positive correlation (p < 0.05) with the main AD performance parameters.
Collapse
Affiliation(s)
- Elena Zhuravleva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia; Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Andrey Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM"; Moscow, 1st Institutskiy Proezd, 5, 109428, Russia.
| | - Dmitriy Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM"; Moscow, 1st Institutskiy Proezd, 5, 109428, Russia.
| | - Irina Kotova
- Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Svetlana Shekhurdina
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia; Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Aleksandra Laikova
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia; Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Anatoly Krasnovsky
- National Research Tomsk State University, Tomsk, Lenin Ave., 36, 634050, Russia.
| | - Timur Pygamov
- Gubkin University, Moscow, Leninsky Prospekt, 65, 119991, Russia.
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuriy Litti
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia.
| |
Collapse
|
6
|
Zhuravleva EA, Shekhurdina SV, Kotova IB, Loiko NG, Popova NM, Kryukov E, Kovalev AA, Kovalev DA, Litti YV. Effects of various materials used to promote the direct interspecies electron transfer on anaerobic digestion of low-concentration swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156073. [PMID: 35618137 DOI: 10.1016/j.scitotenv.2022.156073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 05/23/2023]
Abstract
The activation of direct interspecies electron transfer (DIET) by the supplementation of conductive materials is one of the effective and available methods to enhance anaerobic digestion (AD). Microorganisms that colonize the surface of these materials form biofilms, the study of which could provide new insights into the character of the DIET process and its effect on AD. The present study focused on AD performance, microbial community, as well as morphological and topological features of biofilms on various materials used to promote DIET during AD of low-concentration swine manure. The best AD characteristics were observed in stainless steel mesh (SM)/digested cow manure (CM) and polyester felt (PF)/digested sewage sludge (SS) combinations used as material/inoculum, respectively. Thus, potential methane yields in CM-SM and SS-PF were up to 26.4% and 26.2% higher compared to the corresponding controls. Microbial analysis of biofilms revealed the dominance of putatively syntrophic bacteria of the MBA03 group of the Limnochordia class in CM inoculated reactors, and syntrophic proteolytic bacteria of the genus Coprothermobacter and acetogenic Clostridium sensu stricto 1, known for their ability to carry out DIET, in SS inoculated reactors. Biofilms on non-conductive materials contained pili-like structures, which were observed only in SS inoculated reactors. Polyester felt tended to biofoul better than carbon felt, resulting in up to 2.8, 3.2 and 1.8 higher nucleic acid, extracellular polymeric substances, and total biomass content, respectively, depending on the inoculum. These results provide new insights into the different types of DIET that can occur in low-loaded AD systems with attached growth.
Collapse
Affiliation(s)
- Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia; Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia
| | - Irina B Kotova
- Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia
| | - Natalia G Loiko
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia
| | - Nadezhda M Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky prospect, 119071 Moscow, Russia
| | - Emil Kryukov
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Stockholm, Sweden; International School 'Future Medicine', IM Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., 119435 Moscow, Russia
| | - Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5, 109428 Moscow, Russia
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5, 109428 Moscow, Russia
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312 Moscow, Russia.
| |
Collapse
|