1
|
Zhou J, Wang X, Sun Z, Gu C, Gao J. The mechanisms of ·OH formation in MnO 2 and oxalate system: Implication for ATZ removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134213. [PMID: 38613958 DOI: 10.1016/j.jhazmat.2024.134213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Manganese oxides (MnO2) are commonly prevalent in groundwater, sediment and soil. In this study, we found that oxalate (H2C2O4) dissolved MnO2, leading to the formation of Mn(II)/(III), CO2(aq) and reactive oxygen species (·CO2-/O2·-/H2O2/·OH). Notably, CO2(aq) played a crucial role in ·OH formation, contributing to the degradation of atrazine (ATZ). To elucidate underneath mechanisms, a series of reactions with different gas-liquid ratios (GLR) were conducted. At the GLR of 0.3, 3.76, and + ∞ 79.4 %, 5.32 %, and 5.28 % of ATZ were eliminated, in which the cumulative ·OH concentration was 39.6 μM, 8.11 μM, and 7.39 μM and the cumulative CO2(aq) concentration was 11.2 mM, 4.7 mM, and 2.8 mM, respectively. The proposed reaction pathway was that CO2(aq) participated in the formation of a ternary complex [C2O4-Mn(II)-HCO4·3 H2O]-, which converted to a transition state (TS) as [C2O4-Mn(II)-CO3-OH·3 H2O]-, then decomposed to a complex radical [C2O4-Mn(II)-CO3·3 H2O]·- and ·OH after electron transfer within TS. It was novel to discover the role of CO2(aq) for ·OH yielding during MnO2 dissolution by H2C2O4. This finding helps revealing the overlooked processes that CO2(aq) influenced the fate of ATZ or other organic compounds in environment and providing us ideas for new technique development in contaminant remediation. ENVIRONMENTAL IMPLICATION: Manganese oxides and oxalate are common in soil, sediment and water. Their interactions could induce the formation of Mn(II)/(III), CO2(aq) and ·CO2-/O2·-/H2O2. This study found that atrazine could be effectively removed due to ·OH radicals under condition of high CO2(aq) concentration. The concentrations of Mn (0.0002-8.34 mg·L-1) and CO2(aq) (15-40 mg·L-1) were high in groundwater, and the surface water or rainfall seeps into groundwater and bring organic acids, which might promote the ·OH formation. The results might explain the missing steps of herbicides transformation in these environments and be helpful in developing new techniques in remediation in future.
Collapse
Affiliation(s)
- Jinjin Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, No.188, Tianquan Road, Nanjing, Jiangsu Province 211135, China
| | - Xinghao Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaoyue Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Juan Gao
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, No.188, Tianquan Road, Nanjing, Jiangsu Province 211135, China.
| |
Collapse
|
2
|
Terentyev VV, Zharmukhamedov SK. Evolutionary Loss of the Ability of the Photosystem I Primary Electron Donor for the Redox Interaction with Mn-Bicarbonate Complexes. BIOCHEMISTRY (MOSCOW) 2020; 85:697-708. [PMID: 32586233 DOI: 10.1134/s0006297920060073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structure and functional organization of the photosystem I (PSI) reaction center (RC) donor side has a significant similarity to the reaction centers of purple bacteria (bRCs), despite the fact that they belong to different types of RCs. Moreover, the redox potential values of their primary electron donors are identical (~0.5 V). In our earlier reports [Khorobrykh et al. (2008) Phylos. Trans. R. Soc. B., 363, 1245-1251; Terentyev et al. (2011) Biochemistry (Moscow), 76, 1360-1366; Khorobrykh et al. (2018) ChemBioChem, 14, 1725-1731], we have demonstrated redox interaction of low-potential Mn2+-bicarbonate complexes with bRCs, which might have been one of the first steps in the evolutionary origin of Mn-cluster of the photosystem II water-oxidizing complex that occurred in the Archean (over 3 billion years ago). In this study, we investigated redox interactions between Mn2+-bicarbonate complexes and PSI. Such interactions were almost absent in the original PSI preparations and emerged only in preoxidized PSI preparations containing ~50% oxidized RCs. The interaction between Mn2+-bicarbonate complexes and PSI required increased Mn2+ concentrations, while its dependence on the HCO3- concentration indicated involvement of electroneutral low-potential [Mn(HCO3)2] complex in the process. Analysis of the PSI crystal structure revealed steric hindrances on the RC donor side, which could block the redox interaction between Mn2+-bicarbonate complexes and oxidized primary electron donor. Comparison of structures of RCs from the PSI and ancient RCs from heliobacteria belonging to the same type of RCs suggested that such hindrances should be absent in the primitive PSI in the Archean and allowed to explain their evolutionary origin as a consequence of PSI RCs into the united electron transport chain (ETC) of the photosynthetic membrane that was accompanied by the evolutionary loss of PSI capacity for the redox interaction with Mn2+-bicarbonate complexes.
Collapse
Affiliation(s)
- V V Terentyev
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - S K Zharmukhamedov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Meng ZH, Wu SH, Sun SW, Xu Z, Zhang XC, Wang XM, Liu Y, Ren HT, Jia SY, Bai H, Han X. Formation and Oxidation Reactivity of MnO2+(HCO3–)n in the MnII(HCO3–)–H2O2 System. Inorg Chem 2020; 59:3171-3180. [DOI: 10.1021/acs.inorgchem.9b03524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zi-He Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Song-Hai Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Shi-Wei Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Zhi Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Xiao-Cong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Xiang-Ming Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin, P.R. China
| | - Shao-Yi Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - He Bai
- China Offshore Environmental Service Ltd., Tianjin, P.R. China
| | - Xu Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
4
|
Zhou J, Chen Y, Lan L, Zhang C, Pan M, Wang Y, Han B, Wang Z, Jiao J, Chen Q. A novel catalase mimicking nanocomposite of Mn(II)-poly-L-histidine-carboxylated multi walled carbon nanotubes and the application to hydrogen peroxide sensing. Anal Biochem 2019; 567:51-62. [DOI: 10.1016/j.ab.2018.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/05/2018] [Accepted: 12/09/2018] [Indexed: 12/30/2022]
|
5
|
Tikhonov KG. Autocatalytic and Non-Catalytic Oxidation of Manganese(II) on a Platinum Electrode in Acetic Buffer. Z PHYS CHEM 2017. [DOI: 10.1515/zpch-2016-0794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe influence of acetate on Mn
Collapse
|
6
|
Attiogbe FK, Francis RC. Hydrogen peroxide decomposition in bicarbonate solution catalyzed by divalent manganese species*This article has a companion paper in this issue (doi: 10.1139/v11-078). CAN J CHEM 2011. [DOI: 10.1139/v11-080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The peroxymonocarbonate mono- and di-anions (HCO4– and CO42–) are known to be generated from H2O2/HCO3–. They are promising oxidants for wood pulp bleaching, but peroxide decomposition catalyzed by Mn(II) species may be significant for pulp samples with unusually high Mn contents. This investigation aimed to see if HCO3– addition caused destabilization of the peroxygen system owing to its partial conversion to HCO4–. This anionic peracid is a much stronger oxidant than H2O2 and could lead to a higher rate of Mn(II) oxidation to Mn(III) and (or) Mn(IV). For most free radical chain mechanisms, an increase in Mn(II) oxidation results in a higher rate of peroxide decomposition. Peroxide decomposition catalyzed by Mn(II) was investigated in H2O2/HCO3 in the pH ranges 8.5–8.7 and 7.4–7.9. The rate equation for peroxide decomposition was first order in [H2O2] and [Mn(II)] in both pH ranges, but close to second order in [HCO3–] in the higher pH range and close to third order in the lower pH range. Free radical chain mechanisms were proposed for both pH ranges and with all the correct reaction orders. Contrary to mechanisms previously proposed, it was concluded that HCO4– is the principal oxidizer of Mn(II) in the pH 7.4–7.9 range.
Collapse
Affiliation(s)
- Francis K. Attiogbe
- Department of Paper and Bioprocess Engineering, State University of New York, College of Environmental Science and Forestry (SUNY–ESF), 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Raymond C. Francis
- Department of Paper and Bioprocess Engineering, State University of New York, College of Environmental Science and Forestry (SUNY–ESF), 1 Forestry Drive, Syracuse, NY 13210, USA
| |
Collapse
|
7
|
Kozlov Y, Tikhonov K, Zastrizhnaya O, Klimov V. pH dependence of the composition and stability of MnIII–bicarbonate complexes and its implication for redox interaction of MnII with photosystemII. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:362-6. [DOI: 10.1016/j.jphotobiol.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
8
|
Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress. J Bacteriol 2010; 192:4172-80. [PMID: 20562311 DOI: 10.1128/jb.00372-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.
Collapse
|
9
|
Machado MDS, Villela IV, Moura DJ, Rosa RM, Salvador M, Lopes NP, Braga AL, Roesler R, Saffi J, Henriques JAP. 3′3-Ditrifluoromethyldiphenyl diselenide: A new organoselenium compound with interesting antigenotoxic and antimutagenic activities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 673:133-40. [DOI: 10.1016/j.mrgentox.2009.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 11/28/2022]
|