1
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Wang J, Fan W, Liu B, Pu N, Wu H, Xue R, Li S, Song Z, Tao Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacol Res 2024; 203:107159. [PMID: 38554790 DOI: 10.1016/j.phrs.2024.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Encapsulated cell technology (ECT) is a targeted delivery method that uses the genetically engineered cells in semipermeable polymer capsules to deliver cytokines. Thus far, ECT has been extensively utilized in pharmacologic research, and shows enormous potentials in the treatment of posterior segment diseases. Due to the biological barriers within the eyeball, it is difficult to attain effective therapeutic concentration in the posterior segment through topical administration of drug molecules. Encouragingly, therapeutic cytokines provided by ECT can cross these biological barriers and achieve sustained release at the desired location. The encapsulation system uses permeable materials that allow growth factors and cytokines to diffuse efficiently into retinal tissue. Moreover, the ECT based treatment can be terminated timely when we need to retrieve the implant, which makes the therapy reversible and provides a safer alternative for intraocular gene therapy. Meanwhile, we also place special emphasis on optimizing encapsulation materials and enhancing preservation techniques to achieve the stable release of growth factors and cytokines in the eyeball. This technology holds great promise for the treatment of patients with dry AMD, RP, glaucoma and MacTel. These findings would enrich our understandings of ECT and promote its future applications in treatment of degenerative retinopathy. This review comprises articles evaluating the exactness of artificial intelligence-based formulas published from 2000 to March 2024. The papers were identified by a literature search of various databases (PubMed/MEDLINE, Google Scholar, Cochrane Library and Web of Science).
Collapse
Affiliation(s)
- Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Liu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Rongyue Xue
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| |
Collapse
|
3
|
Zhao D, Mo Y, Neganova ME, Aleksandrova Y, Tse E, Chubarev VN, Fan R, Sukocheva OA, Liu J. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front Cell Dev Biol 2023; 11:1266537. [PMID: 37849740 PMCID: PMC10577389 DOI: 10.3389/fcell.2023.1266537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Successful clinical methods for tumor elimination include a combination of surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the crucial components of the cancer treatment regimens which allow to extend patient life expectancy. Current cutting-edge radiotherapy research is focused on the identification of methods that should increase cancer cell sensitivity to radiation and activate anti-cancer immunity mechanisms. Radiation treatment activates various cells of the tumor microenvironment (TME) and impacts tumor growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to regulate signaling and anti-cancer functions of various TME immune and vasculature cell components, including tumor-associated macrophages, dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural killers, and other T cell subsets. Dual effects of radiation, including metastasis-promoting effects and activation of oxidative stress, have been detected, suggesting that radiotherapy triggers heterogeneous targets. In this review, we critically discuss the activation of TME and angiogenesis during radiotherapy which is used to strengthen the effects of novel immunotherapy. Intracellular, genetic, and epigenetic mechanisms of signaling and clinical manipulations of immune responses and oxidative stress by radiotherapy are accented. Current findings indicate that radiotherapy should be considered as a supporting instrument for immunotherapy to limit the cancer-promoting effects of TME. To increase cancer-free survival rates, it is recommended to combine personalized radiation therapy methods with TME-targeting drugs, including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Margarita E. Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Zahra M, Zahra AK, Abd-Elall M, Hantera M, Sakran A. Endostatin level in coronavirus patients: a prospective study. TANTA MEDICAL JOURNAL 2023; 51:13. [DOI: 10.4103/tmj.tmj_62_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Kaur D, Behl T, Chigurupati S, Sehgal A, Singh S, Sharma N, Badavath VN, Vargas-De-La-Cruz C, Bhatia S, Al-Harrasi A, Dey A, Aleya L, Bungau S. Deciphering the focal role of endostatin in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61998-62011. [PMID: 34561808 DOI: 10.1007/s11356-021-16567-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a paramount chronic neurodegenerative condition that has been affecting elderly people since the 1900s. It causes memory loss, disorientation, and poor mental function. AD is considered to be one of the most serious problems that dementia sufferers face. Despite extensive investigation, the pathological origin of Alzheimer's disease remains a mystery. The amyloid cascade theory and the vascular hypothesis, which stresses the buildup of Aβ plaques, have dominated research into dementia and aging throughout history. However, research into this task failed to yield the long-awaited therapeutic miracle lead for Alzheimer's disease. Perhaps a hypothetical fragility in the context of Alzheimer's disease was regarded as a state distinct from aging in general, as suggested by the angiogenesis hypothesis, which suggests that old age is one state associated with upregulation of angiogenic growth factors, resulting in decreased microcirculation throughout the body. There has also been evidence that by controlling or inhibiting the components involved in the sequence of events that cause angiogenesis, there is a visible progression in AD patients. In Alzheimer's disease, one such antiangiogenic drug is being used.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza e Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
6
|
Venkateshappa BM, Raju B, Rallo MS, Jumah F, Suresh SC, Gupta G, Nanda A. Knobloch Syndrome, a Rare Cause of Occipital Encephalocele and Seizures: A Case Report. Pediatr Neurosurg 2021; 56:274-278. [PMID: 33789317 DOI: 10.1159/000512719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Knobloch syndrome (KS) is a rare autosomal recessive disorder associated with multiple ocular and cranial abnormalities. Occult occipital skull defect or encephalocele should raise suspicion of this disease. It is never reported in neurosurgical literature, possibly due to a lack of clinician familiarity, leading to underdiagnosis and inadequate management. Our patient also had seizures, which is a sporadic presentation of this syndrome. CASE DESCRIPTION Here, we report a clinico-radiologic finding of a 7-year-old boy who presented with seizures, cataracts, and an occipital bone defect along with bilateral subependymal heterotopias and polymicrogyria. CONCLUSIONS This case highlights the importance of consideration of this syndrome in children with a midline occipital bone defect with or without encephalocele and seizures. Early recognition of this presentation is critical for obtaining access to appropriate genetic counseling and subsequent monitoring and prevention of complications by surgical intervention.
Collapse
Affiliation(s)
| | - Bharath Raju
- Department of Neurosurgery, Sparsh Hospital, Hassan, India.,Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School & University Hospital, New Brunswick, New Jersey, USA
| | - Michael S Rallo
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School & University Hospital, New Brunswick, New Jersey, USA
| | - Fareed Jumah
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School & University Hospital, New Brunswick, New Jersey, USA
| | - Sumatha Channapatna Suresh
- Department of Medicine, Kempegowda Institute of Medical Science and Research Institute, Bengaluru, India
| | - Gaurav Gupta
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School & University Hospital, New Brunswick, New Jersey, USA
| | - Anil Nanda
- Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School & University Hospital, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020; 10:397. [PMID: 32351878 PMCID: PMC7174611 DOI: 10.3389/fonc.2020.00397] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean Claude Monboisse
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| |
Collapse
|
8
|
Wen Q, Mruk D, Tang EI, Wong CK, Lui WY, Lee WM, Xiao X, Silvestrini B, Cheng CY. Cell polarity and cytoskeletons-Lesson from the testis. Semin Cell Dev Biol 2018; 81:21-32. [PMID: 28965865 PMCID: PMC5889362 DOI: 10.1016/j.semcdb.2017.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Cell polarity in the adult mammalian testis refers to the polarized alignment of developing spermatids during spermiogenesis and the polarized organization of organelles (e.g., phagosomes, endocytic vesicles, Sertoli cell nuclei, Golgi apparatus) in Sertoli cells and germ cells to support spermatogenesis. Without these distinctive features of cell polarity in the seminiferous epithelium, it is not possible to support the daily production of millions of sperm in the limited space provided by the seminiferous tubules in either rodent or human males through the adulthood. In short, cell polarity provides a novel mean to align spermatids and the supporting organelles (e.g., phagosomes, Golgi apparatus, endocytic vesicles) in a highly organized fashion spatially in the seminiferous epithelium during the epithelial cycle of spermatogenesis. This is analogous to different assembling units in a manufacturing plant such that as developing spermatids move along the "assembly line" conferred by Sertoli cells, different structural/functional components can be added to (or removed from) the developing spermatids during spermiogenesis, so that functional spermatozoa are produced at the end of the assembly line. Herein, we briefly review findings regarding the regulation of cell polarity in the testis with specific emphasis on developing spermatids, supported by an intriguing network of regulatory proteins along a local functional axis. Emerging evidence has suggested that cell cytoskeletons provide the tracks which in turn confer the unique assembly lines in the seminiferous epithelium. We also provide some thought-provoking concepts based on which functional experiments can be designed in future studies.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| | - Elizabeth I. Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| | - Chris K.C. Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wing-yee Lui
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Will M. Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | | | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| |
Collapse
|
9
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
10
|
Mohajeri A, Sanaei S, Kiafar F, Fattahi A, Khalili M, Zarghami N. The Challenges of Recombinant Endostatin in Clinical Application: Focus on the Different Expression Systems and Molecular Bioengineering. Adv Pharm Bull 2017; 7:21-34. [PMID: 28507934 PMCID: PMC5426730 DOI: 10.15171/apb.2017.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis plays an essential role in rapid growing and metastasis of the tumors. Inhibition of angiogenesis is a putative strategy for cancer therapy. Endostatin (Es) is an attractive anti-angiogenesis protein with some clinical application challenges including; short half-life, instability in serum and requirement to high dosage. Therefore, production of recombinant endostatin (rEs) is necessary in large scale. The production of rEs is difficult because of its structural properties and is high-cost. Therefore, this review focused on the different expression systems that involved in rEs production including; mammalian, baculovirus, yeast, and Escherichia coli (E. coli) expression systems. The evaluating of the results of different expression systems declared that none of the mentioned systems can be considered to be generally superior to the other. Meanwhile with considering the advantages and disadvantage of E. coli expression system compared with other systems beside the molecular properties of Es, E. coli expression system can be a preferred expression system for expressing of the Es in large scale. Also, the molecular bioengineering and sustained release formulations that lead to improving of its stability and bioactivity will be discussed. Point mutation (P125A) of Es, addition of RGD moiety or an additional zinc biding site to N-terminal of Es , fusing of Es to anti-HER2 IgG or heavy-chain of IgG, and finally loading of the endostar by PLGA and PEG- PLGA nanoparticles and gold nano-shell particles are the effective bioengineering methods to overcome to clinical changes of endostatin.
Collapse
Affiliation(s)
- Abbas Mohajeri
- Department of Biotechnology, Zahravi Pharmaceutical Company, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaei
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Kiafar
- Department of Biotechnology, Zahravi Pharmaceutical Company, Tabriz, Iran
| | - Amir Fattahi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Department of Basic Science, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
11
|
Liang YK, Bian LJ. Voltage-Dependent Anion Channel-1, a Possible Ligand of Plasminogen Kringle 5. PLoS One 2016; 11:e0164834. [PMID: 27749918 PMCID: PMC5066947 DOI: 10.1371/journal.pone.0164834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 09/30/2016] [Indexed: 11/18/2022] Open
Abstract
Kringle 5, the fifth fragment of plasminogen, is known to be important for inhibiting the proliferation and migration of vascular endothelial cell (VEC), while not having any effects on normal endothelial cells. Therefore, it may be a potential tumor therapy candidate. However, the ligand of the Kringle 5 in VEC has not yet been identified. In this study, the possible ligand of Kringle 5 in vitro was screened and validated using Ph.D.-7 phage display peptide library with molecular docking, along with surface plasma resonance (SPR). After four rounds of panning, the specific clones of Kringle 5 were confirmed using enzyme-linked immunosorbent assay (ELISA). The gene sequence analysis showed that they expressed the common amino sequence IGNSNTL. Then, using a NCBI BLAST, 103 matching sequences were found. Following the molecular docking evaluation and considering the acting function and pathway of the plasminogen Kringle 5 in the human body, the most promising candidate was determined to be voltage-dependent anion channel-1 (VDAC-1), which was able to bind to Kringle 5 at -822.65 J·mol-1 of the binding energy at the residues of Lys12, Thr19, Ser57, Thr188, Arg139, Asn214, Ser240 and Lys274. A strong dose-dependent interaction occurred between the VDAC-1 and Kringle 5 (binding constant 2.43 × 103 L·mol-1) in SPR observation. Therefore, this study proposed that VDAC-1 was a potential ligand of plasminogen Kringle 5, and also demonstrated that the screening and validation of protein ligand using phage display peptide library with the molecular docking, along with SPR, was a practicable application.
Collapse
Affiliation(s)
- Yin-ku Liang
- College of Life Sciences, Northwest University, Xi’an 710069, P. R. China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, P. R. China
- Shaanxi Province Key Laboratory of Bio-Resource, Shaanxi University of Technology, Hanzhong 723000, P. R. China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi province, Shaanxi University of Technology, Hanzhong 723000, P. R. China
| | - Liu-jiao Bian
- College of Life Sciences, Northwest University, Xi’an 710069, P. R. China
- * E-mail:
| |
Collapse
|
12
|
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311:F831-F843. [PMID: 27582102 DOI: 10.1152/ajprenal.00313.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
13
|
Zaruma-Torres F, Lares-Asseff I, Lima A, Reyes-Espinoza A, Loera-Castañeda V, Sosa-Macías M, Galaviz-Hernández C, Arias-Peláez MC, Reyes-López MA, Quiñones LA. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children. Front Pharmacol 2016; 7:238. [PMID: 27547186 PMCID: PMC4974492 DOI: 10.3389/fphar.2016.00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children.
Collapse
Affiliation(s)
- Fausto Zaruma-Torres
- Pharmacogenomics Academia, National Polytechnic Institute-CIIDIRDurango, Mexico; School of Biochemistry and Pharmacy, University of CuencaCuenca, Ecuador
| | - Ismael Lares-Asseff
- Pharmacogenomics Academia, National Polytechnic Institute-CIIDIR Durango, Mexico
| | - Aurea Lima
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde Gandra, Portugal
| | | | | | - Martha Sosa-Macías
- Pharmacogenomics Academia, National Polytechnic Institute-CIIDIR Durango, Mexico
| | | | - María C Arias-Peláez
- Institute of Scientific Research of the University Juarez of State of Durango Durango, Mexico
| | - Miguel A Reyes-López
- Center of Biotechnology Genomics, National Polytechnic Institute Reynosa, Mexico
| | - Luis A Quiñones
- Pharmacological and Molecular Program, Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Faculty of Medicine, ICBM, University of Chile Santiago, Chile
| |
Collapse
|
14
|
Hu W, Fang J, Nie J, Dai L, Zhang J, Chen X, Ma X, Tian G, Wu D, Han S, Han J, Wang Y, Long J. Efficacy and safety of extended use of platinum-based doublet chemotherapy plus endostatin in patients with advanced nonsmall cell lung cancer. Medicine (Baltimore) 2016; 95:e4183. [PMID: 27428214 PMCID: PMC4956808 DOI: 10.1097/md.0000000000004183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the efficacy and safety of the extended use of platinum-based doublet chemotherapy (PT-DC) plus endostatin in patients with advanced nonsmall cell lung cancer (NSCLC).We performed a retrospective analysis of 200 newly diagnosed advanced NSCLC patients who had received at least 1 cycle of endostatin plus PT-DC between September 2009 and November 2014. Of these patients, 155 received 4 or more cycles of therapy (the extended therapy group), while 45 received less than 4 cycles of therapy (the control group). Clinical tumor responses, progression-free survival (PFS), overall survival (OS), and toxicity profiles were recorded and retrospectively analyzed.In the extended therapy group, 67 patients (43.2%) achieved a best overall response rate of partial response (PR), while in the control group, 13 patients (28.9%) had a best overall response rate of PR. After a median follow-up of 15.9 months, the median PFS and OS were 8.0 and 23.1 months in the extended arm and 5.8 and 14.0 months in the control arm, respectively. There were statistically significant differences in median PFS and OS between these 2 arms. Hematologic and gastrointestinal toxicities occurred more frequently in the extended therapy group, but no statistically significant difference was detected in grade 3 to 4 toxicities overall between these 2 groups.In conclusion, extended treatment using endostatin combined with PT-DC can provide additional survival benefits and satisfactory toxicity profiles in previously untreated patients with NSCLC, which merits further evaluation in a larger prospective study.
Collapse
Affiliation(s)
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing, China
- Correspondence: Jian Fang, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing 100142, China (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wiggs JL, Howell GR, Linkroum K, Abdrabou W, Hodges E, Braine CE, Pasquale LR, Hannon GJ, Haines JL, John SWM. Variations in COL15A1 and COL18A1 influence age of onset of primary open angle glaucoma. Clin Genet 2013; 84:167-74. [PMID: 23621901 DOI: 10.1111/cge.12176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
Primary open angle glaucoma (POAG) is a genetically and phenotypically complex disease that is a leading cause of blindness worldwide. Previously we completed a genome-wide scan for early-onset POAG that identified a locus on 9q22 (GLC1J). To identify potential causative variants underlying GLC1J, we used targeted DNA capture followed by high throughput sequencing of individuals from four GLC1J pedigrees, followed by Sanger sequencing to screen candidate variants in additional pedigrees. A mutation likely to cause early-onset glaucoma was not identified, however COL15A1 variants were found in the youngest affected members of 7 of 15 pedigrees with variable disease onset. In addition, the most common COL15A1 variant, R163H, influenced the age of onset in adult POAG cases. RNA in situ hybridization of mouse eyes shows that Col15a1 is expressed in the multiple ocular structures including ciliary body, astrocytes of the optic nerve and cells in the ganglion cell layer. Sanger sequencing of COL18A1, a related multiplexin collagen, identified a rare variant, A1381T, in members of three additional pedigrees with early-onset disease. These results suggest genetic variation in COL15A1 and COL18A1 can modify the age of onset of both early and late onset POAG.
Collapse
Affiliation(s)
- J L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Braga MS, Turaça TL, Foguer K, Chaves KCB, Pesquero JB, Chammas R, Schor N, Bellini MH. Vascular endothelial growth factor as a biomarker for endostatin gene therapy. Biomed Pharmacother 2013; 67:511-5. [PMID: 23726969 DOI: 10.1016/j.biopha.2013.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/19/2013] [Indexed: 12/26/2022] Open
Abstract
Renal cell carcinoma (RCC) is characterized by high vascular endothelial growth factor (VEGF) production and, consequently, excessive angiogenesis. Several strategies have been developed to target angiogenesis as a method for treating metastatic RCC (mRCC). Endostatin (ES) is a C-terminal fragment of collagen XVIII that has antiangiogenic activity. The aim of this study was to investigate the predictive value of circulating VEGF-A in a murine model of mRCC after ES gene therapy. ES therapy did not affect the levels of collagen XVIII/ES or ES in the tissue. The circulating level of ES was increased in the control and ES-treated groups (normal vs. control, P<0.05 and ES-treated vs. control, P<0.001), and the intratumoral vessels were significantly decreased (ES-treated vs. control, P<0.05). ES therapy decreased the VEGF mRNA levels. The tissue and circulating levels of VEGF in the control group were significantly higher than normal (P<0.01 and P<0.05, respectively). Treatment with ES significantly reduced the VEGF concentrations in both compartments (P<0.001 for tissue and P<0.05 for plasma). Our findings indicate that in addition to the directly targeted tumor vessels, ES exerts its antitumor effect by down-regulating VEGF gene expression in renal tumor cells. Additionally, our findings point to the predictive value of VEGF for ES therapy.
Collapse
|
17
|
Chaves KCB, Turaça LT, Pesquero JB, Mennecier G, Dagli MLZ, Chammas R, Schor N, Bellini MH. Fibronectin expression is decreased in metastatic renal cell carcinoma following endostatin gene therapy. Biomed Pharmacother 2012; 66:464-8. [DOI: 10.1016/j.biopha.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/15/2012] [Indexed: 12/31/2022] Open
|
18
|
Enhanced effects of TRAIL-endostatin-based double-gene-radiotherapy on suppressing growth, promoting apoptosis and inducing cell cycle arrest in vascular endothelial cells. ACTA ACUST UNITED AC 2012; 32:167-172. [PMID: 22528215 DOI: 10.1007/s11596-012-0030-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Indexed: 02/05/2023]
Abstract
This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellular growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and endostatin protein in ECV304 cells was detected by ELISA after the transfection of recombinant plasmid pshuttle-Egr1-shTRAIL-shES and X-ray irradiation. Then MTT assay was used for determining the cellular proliferation, and flow cytometry (FCM) plus Annexin V and propidium iodide (PI) double-staining or PI single-staining were employed for the detection of apoptosis and cell cycle progression. The results showed that expression of TRAIL and endostatin protein exhibited a time- and dose-dependent change in ECV304 cells after pshuttle-Egr1-shTRAIL-shES transfection in conjunction with irradiation. In the TRAIL-endostatin-based single- or double-gene-radiotherapy, the cell viability declined in a time- and dose-dependent manner, the percentage of cells at G(2)/M phase and apoptotic rate was increased, and the percentage of cells at G(0)/G(1) phase was lowered as compared with those receiving radiotherapy alone. Moreover, TRAIL-endostatin-based double-gene-radiotherapy demonstrated better effects on growth inhibition, promotion of apoptosis and induction of cell cycle arrest in ECV304 cells than single-gene-radiotherapy.
Collapse
|
19
|
Wang H, Zheng LF, Feng Y, Xie XQ, Yang XM, Zhang GX. CTA combined with CT perfusion for assessing the efficacy of anti-angiogenic therapy in rabbit VX2 tumors. Acad Radiol 2012; 19:358-65. [PMID: 22310524 DOI: 10.1016/j.acra.2011.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 01/30/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to validate the feasibility of assessing the efficacy of antiangiogenic therapy on VX2 tumors using three-dimensional computed tomographic (CT) angiography (CTA) combined with CT perfusion. MATERIALS AND METHODS Forty rabbits with VX2 tumors were randomly assigned to four groups according to different doses of antiangiogenic drug, which were administered intraperitoneally daily for 14 days. In each group, 10 animals were scanned using three-dimensional CTA and CT perfusion on days 1 and 2 after the latest administration of the drug. Tumor masses were sectioned, stained by immunohistochemistry, and processed for correlation between CT imaging and histology. RESULTS The numbers of new tumor vessels from CTA were significantly different among the four groups (P < .001). As the dose of the drug increased, blood flow and blood volume on CT perfusion increased linearly, but the mean transit time and permeability surface-area product decreased linearly (P < .001). Immunohistochemical analyses showed that microvascular density decreased, while both luminal vascular number and mature vessel number increased linearly as the drug dose increased (P < .001). CT manifestations were correlated well with histologic findings (P < .05). CONCLUSIONS It is feasible to assess the efficacy of antiangiogenic therapy on VX2 tumors using three-dimensional CTA combined with CT perfusion. Three-dimensional CTA can display the morphologic changes of tumor vessels, while CT perfusion can predict the functional changes of tumor vessels after antiangiogenic therapy.
Collapse
|
20
|
Mahajan VB, Olney AH, Garrett P, Chary A, Dragan E, Lerner G, Murray J, Bassuk AG. Collagen XVIII mutation in Knobloch syndrome with acute lymphoblastic leukemia. Am J Med Genet A 2011; 152A:2875-9. [PMID: 20799329 DOI: 10.1002/ajmg.a.33621] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Knobloch syndrome (KNO) is caused by mutations in the collagen XVIII gene (COL18A1) and patients develop encephalocele and vitreoretinal degeneration. Here, we report an El Salvadorian family where two sisters showed features of KNO. One of the siblings also developed acute lymphoblastic leukemia. DNA sequencing of COL18A1 revealed a homozygous, 2-bp deletion (c3514-3515delCT) in exon 41, which leads to abnormal collagen XVIII and deficiency of its proteolytic cleavage product endostatin. KNO patients with mutations in COL18A1 may be at risk for endostatin-related conditions including malignancy.
Collapse
Affiliation(s)
- Vinit B Mahajan
- Department of Ophthalmology and Visual Sciences, The University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Roberts KE, Kawut SM, Krowka MJ, Brown RS, Trotter JF, Shah V, Peter I, Tighiouart H, Mitra N, Handorf E, Knowles JA, Zacks S, Fallon MB. Genetic risk factors for hepatopulmonary syndrome in patients with advanced liver disease. Gastroenterology 2010; 139:130-9.e24. [PMID: 20346360 PMCID: PMC2908261 DOI: 10.1053/j.gastro.2010.03.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/24/2010] [Accepted: 03/04/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Hepatopulmonary syndrome (HPS) affects 10%-30% of patients with cirrhosis and portal hypertension and significantly increases mortality. Studies in experimental models indicate that pulmonary angiogenesis contributes to the development of HPS, but pathogenesis in humans is poorly understood. We investigated genetic risk factors for HPS in patients with advanced liver disease. METHODS We performed a multicenter case-control study of patients with cirrhosis being evaluated for liver transplantation. Cases had an alveolar-arterial oxygen gradient > or = 15 mm Hg (or > or =20 mm Hg if age > 64 years) and contrast echocardiography with late appearance of microbubbles after venous injection of agitated saline (intrapulmonary vasodilatation); controls did not meet both criteria for case status. The study sample included 59 cases and 126 controls. We genotyped 1086 common single nucleotide polymorphisms (SNPs) in 94 candidate genes. RESULTS Forty-two SNPs in 21 genes were significantly associated with HPS after adjustments for race and smoking. Eight genes had at least 2 SNPs associated with disease: CAV3, ENG, NOX4, ESR2, VWF, RUNX1, COL18A1, and TIE1. For example, rs237872 in CAV3 showed an odds ratio of 2.75 (95% confidence interval: 1.65-4.60, P = .0001) and rs4837192 in ENG showed an odds ratio of 0.35 (95% confidence interval: 0.14-0.89, P = .027). Furthermore, variation in CAV3 and RUNX1 was associated with HPS in gene-based analyses. CONCLUSIONS Polymorphisms in genes involved in the regulation of angiogenesis are associated with the risk of HPS. Further investigation of these biologic pathways might elucidate the mechanisms that mediate the development of HPS in certain patients with severe liver disease.
Collapse
Affiliation(s)
- Kari E. Roberts
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Steven M. Kawut
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Robert S. Brown
- Department of Medicine, Columbia University, New York, New York
| | - James F. Trotter
- Department of Medicine, University of Colorado, Denver, Colorado
| | - Vijay Shah
- Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Inga Peter
- Department of Genetic and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Hocine Tighiouart
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Nandita Mitra
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth Handorf
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - James A. Knowles
- Department of Psychiatry, University of Southern California, Los Angeles, California
| | - Steven Zacks
- Department of Medicine, University of Southern California, Los Angeles, California
| | - Michael B. Fallon
- Department of Medicine, University of Texas Health Science Center, Houston, Texas
| | | |
Collapse
|
22
|
Faye C, Chautard E, Olsen BR, Ricard-Blum S. The first draft of the endostatin interaction network. J Biol Chem 2009; 284:22041-22047. [PMID: 19542224 DOI: 10.1074/jbc.m109.002964] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endostatin is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds to heparin/heparan sulfate and to a number of proteins, but its molecular mechanisms of action are not fully elucidated. We have used surface plasmon resonance (SPR) arrays to identify new partners of endostatin, and to give further insights on its molecular mechanism of action. New partners of endostatin include glycosaminoglycans (chondroitin and dermatan sulfate), matricellular proteins (thrombospondin-1 and SPARC), collagens (I, IV, and VI), the amyloid peptide Abeta-(1-42), and transglutaminase-2. The biological functions of the endostatin network involve a number of extracellular proteins containing epidermal growth factor and epidermal growth factor-like domains, and able to bind calcium. Depending on the trigger event, and on the availability of its members in a given tissue at a given time, the endostatin network might be involved either in the control of angiogenesis, and tumor growth, or in neurogenesis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Clément Faye
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Emilie Chautard
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| |
Collapse
|
23
|
Faye C, Moreau C, Chautard E, Jetne R, Fukai N, Ruggiero F, Humphries MJ, Olsen BR, Ricard-Blum S. Molecular interplay between endostatin, integrins, and heparan sulfate. J Biol Chem 2009; 284:22029-22040. [PMID: 19502598 DOI: 10.1074/jbc.m109.002840] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endostatin is an endogenous inhibitor of angiogenesis. Although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanism of action is not fully elucidated. We used surface plasmon resonance assays to characterize interactions between endostatin, integrins, and heparin/heparan sulfate. alpha5beta1 and alphavbeta3 integrins form stable complexes with immobilized endostatin (KD=approximately 1.8x10(-8) M, two-state model). Two arginine residues (Arg27 and Arg139) are crucial for the binding of endostatin to integrins and to heparin/heparan sulfate, suggesting that endostatin would not bind simultaneously to integrins and to heparan sulfate. Experimental data and molecular modeling support endostatin binding to the headpiece of the alphavbeta3 integrin at the interface between the beta-propeller domain of the alphav subunit and the betaA domain of the beta3 subunit. In addition, we report that alpha5beta1 and alphavbeta3 integrins bind to heparin/heparan sulfate. The ectodomain of the alpha5beta1 integrin binds to haparin with high affinity (KD=15.5 nM). The direct binding between integrins and heparin/heparan sulfate might explain why both heparan sulfate and alpha5beta1 integrin are required for the localization of endostatin in endothelial cell lipid rafts.
Collapse
Affiliation(s)
- Clément Faye
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Moreau
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Emilie Chautard
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Reidunn Jetne
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Naomi Fukai
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Florence Ruggiero
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-University Lyon 1, IFR 128 Biosciences Gerland Lyon Sud, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| |
Collapse
|
24
|
Karamouzis MV, Moschos SJ. The use of endostatin in the treatment of solid tumors. Expert Opin Biol Ther 2009; 9:641-8. [DOI: 10.1517/14712590902882118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Michalis V Karamouzis
- National & Kapodistrian University of Athens Medical School, Department of Biological Chemistry, Athens, Greece
| | - Stergios J Moschos
- University of Pittsburgh Cancer Institute, Hillman Cancer Center Research Pavilion, Suite 1.32, 5117 Centre Avenue, Pittsburgh, 15213 PA, USA ;
| |
Collapse
|
25
|
Kwon M, Hanna E, Lorang D, He M, Quick JS, Adem A, Stevenson C, Chung JY, Hewitt SM, Zudaire E, Esposito D, Cuttitta F, Libutti SK. Functional characterization of filamin a interacting protein 1-like, a novel candidate for antivascular cancer therapy. Cancer Res 2008; 68:7332-41. [PMID: 18794120 DOI: 10.1158/0008-5472.can-08-1087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibiting angiogenesis has become a major therapeutic strategy for cancer treatment. To identify common intracellular mediators, we previously analyzed gene expression profiles of endothelial cells after treatment with angiogenesis inhibitors. Filamin A interacting protein 1-like (FILIP1L; previously known as down-regulated in ovarian cancer 1) was identified as one of the genes up-regulated in endothelial cells in response to these inhibitors. However, the expression and function of FILIP1L protein is uncharacterized. Here, we provide the first description of the expression and specific subcellular localization of FILIP1L protein in human tissue. Overexpression of FILIP1L resulted in inhibition of cell proliferation and migration and increased apoptosis. In addition, overexpression of FILIP1L truncation mutants showed differential antiproliferative activity. A COOH terminal truncation mutant (FILIP1LDeltaC103) was more potent than wild-type FILIP1L in mediating this activity. Targeted expression of FILIP1LDeltaC103 in tumor vasculature inhibited tumor growth in vivo. Overall, these findings suggest that the novel protein FILIP1L may be an important mediator of the effects of angiogenesis inhibitors and that FILIP1L has the potential to be an antivascular reagent for cancer therapy.
Collapse
Affiliation(s)
- Mijung Kwon
- Tumor Angiogenesis Section, Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mattsson JM, Valmu L, Laakkonen P, Stenman UH, Koistinen H. Structural characterization and anti-angiogenic properties of prostate-specific antigen isoforms in seminal fluid. Prostate 2008; 68:945-54. [PMID: 18386289 DOI: 10.1002/pros.20751] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The prostate produces high levels of prostate-specific antigen (PSA), which has been shown to exert anti-angiogenic properties and thus might slow down prostate tumor growth. It has been suggested that the protease activity of PSA is not needed for its anti-angiogenic function. We have previously shown that seminal fluid contains both active and inactive, internally cleaved forms of PSA. The precise structural differences between these isoforms and their function are not known. METHODS To elucidate the structures, we purified PSA from seminal fluid and separated it by anion-exchange chromatography into six different isoforms, which were characterized by mass spectrometry. The anti-angiogenic activity of these PSA-isoforms was analyzed by human umbilical vein endothelial cell (HUVEC) tube formation assay. RESULTS The enzymatically active PSA-isoforms had an intact peptide moiety but could be separated into three isoforms based on differences in glycosylation. The major isoform contained PSA with a biantennary carbohydrate with terminal sialic acids on both antennae. The other active isoforms showed significant carbohydrate heterogeneity, containing one or no sialic acid. The inactive isoforms were internally cleaved at several different positions, but the fragments were held together by disulphide bonds. The enzymatic activity of PSA correlated with its inhibitory effect on the endothelial cell tube formation and the inhibition was dose-dependent at physiological concentrations, whereas enzymatically inactive internally cleaved PSA-isoforms had no effect. CONCLUSIONS Our results show that the anti-angiogenic effect of PSA is based on its proteolytic activity.
Collapse
Affiliation(s)
- Johanna M Mattsson
- Department of Clinical Chemistry, Biomedicum Helsinki, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
27
|
Abstract
Abstract
Background
Antiangiogenic therapy has become a reality with the recent introduction of bevacizumab, a monoclonal antibody against vascular endothelial growth factor.
Methods
Relevant medical literature from PubMed, National Institute for Health and Clinical Excellence and National Institutes of Health websites to August 2007 was reviewed.
Results and conclusions
Although often described as the fourth modality of treatment after surgery, radiotherapy and chemotherapy, many antiangiogenic drugs have failed to live up to expectations. Nevertheless, research continues and there are reasons to believe that antiangiogenic therapy may yet have a future in the clinical setting.
Collapse
Affiliation(s)
- A R John
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
- Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham, UK
| | - S R Bramhall
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - M C Eggo
- Division of Medical Sciences, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|