1
|
Kontogiannis S, Markantes G, Stamou M, Tsagkarakis M, Mamali I, Giannitsas K, Perimenis P, Georgopoulos N, Athanasopoulos A. Anti-Müllerian hormone: a novel biomarker for aggressive prostate cancer? Emerging evidence from a prospective study of radical prostatectomies. Hormones (Athens) 2024; 23:297-304. [PMID: 38127275 PMCID: PMC11190032 DOI: 10.1007/s42000-023-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Prostate cancer patients are a heterogeneous group as regards the aggressiveness of the disease. The relationship of steroid hormones with the aggressiveness of prostate cancer is unclear. It is known that the anti-Müllerian hormone (AMH) inhibits prostate cancer cell lines in vitro. The aim of this study is to investigate the relationship of AMH and steroid hormones with the aggressiveness of prostate cancer. METHODS This was a prospective study of consecutive radical prostatectomy patients. We measured the following hormones: total testosterone, sex hormone-binding globulin, albumin, luteinizing hormone, follicle-stimulating hormone, estradiol, dehydroepiandrosterone sulfate, androstenedione, and AMH. The minimum follow-up after radical prostatectomy was 5 years. For the aggressiveness of prostate cancer, we considered the following three variables: post-operative Gleason score (GS) ≥ 8, TNM pΤ3 disease, and prostate-specific antigen (PSA) biochemical recurrence (BCR). RESULTS In total, 91 patients were enrolled. The mean age and PSA were 64.8 years and 9.3 ng/dl, respectively. The median post-operative GS was 7. Low AMH blood levels were correlated with higher post-operative GS (p = 0.001), as well as with PSA BCR (p = 0.043). With pT3 disease, only albumin was (negatively) correlated (p = 0.008). ROC analysis showed that AMH is a good predictor of BCR (AUC 0.646, 95% CI 0.510-0.782, p = 0.043); a cutoff value of 3.06 ng/dl had a positive prognostic value of 71.4% and a negative prognostic value of 63.3% for BCR. Cox regression analysis showed that AMH is a statistically significant and independent prognostic marker for BCR (p = 0.013). More precisely, for every 1 ng/ml of AMH rise, the probability for PSA BCR decreases by 20.8% (HR = 0.792). Moreover, in Kaplan-Meier analysis, disease-free survival is more probable in patients with AMΗ ≥ 3.06 ng/ml (p = 0.004). CONCLUSIONS Low AMH blood levels were correlated with aggressive prostate cancer in this radical prostatectomy cohort of patients. Therefore, AMH could be a prognostic biomarker for the aggressiveness of the disease.
Collapse
Affiliation(s)
| | | | - Maria Stamou
- Harvard Reproductive Sciences Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Irini Mamali
- Endocrinology Department, Patras University Hospital, Patras, Greece
| | | | | | | | | |
Collapse
|
2
|
The Expression of Anti-Müllerian Hormone Type II Receptor (AMHRII) in Non-Gynecological Solid Tumors Offers Potential for Broad Therapeutic Intervention in Cancer. BIOLOGY 2021; 10:biology10040305. [PMID: 33917111 PMCID: PMC8067808 DOI: 10.3390/biology10040305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Until now, only a few studies have examined the AMHRII expression in tumors. Here, with more than 1000 tumor samples and using several complementary techniques we confirmed AMHRII expression in gynecological cancer and demonstrated AMHRII expression in certain non-gynecological cancers such as colorectal cancers. These findings open the way for new therapeutic approaches targeting AMHRII and emphasize the need to better understand the role of AMH/AMHRII in cancer. Abstract The anti-Müllerian hormone (AMH) belongs to the TGF-β family and plays a key role during fetal sexual development. Various reports have described the expression of AMH type II receptor (AMHRII) in human gynecological cancers including ovarian tumors. According to qRT-PCR results confirmed by specific In-Situ Hybridization (ISH) experiments, AMHRII mRNA is expressed in an extremely restricted number of normal tissues. By performing ISH on tissue microarray of solid tumor samples AMHRII mRNA was unexpectedly detected in several non-gynecological primary cancers including lung, breast, head and neck, and colorectal cancers. AMHRII protein expression, evaluated by immunohistochemistry (IHC) was detected in approximately 70% of epithelial ovarian cancers. Using the same IHC protocol on more than 900 frozen samples covering 18 different cancer types we detected AMHRII expression in more than 50% of hepato-carcinomas, colorectal, lung, and renal cancer samples. AMHRII expression was not observed in neuroendocrine lung tumor samples nor in non-Hodgkin lymphoma samples. Complementary analyses by immunofluorescence and flow cytometry confirmed the detection of AMHRII on a panel of ovarian and colorectal cancers displaying comparable expression levels with mean values of 39,000 and 50,000 AMHRII receptors per cell, respectively. Overall, our results suggest that this embryonic receptor could be a suitable target for treating AMHRII-expressing tumors with an anti-AMHRII selective agent such as murlentamab, also named 3C23K or GM102. This potential therapeutic intervention was confirmed in vivo by showing antitumor activity of murlentamab against AMHRII-expressing colorectal cancer and hepatocarcinoma Patient-Derived tumor Xenografts (PDX) models.
Collapse
|
3
|
Kushnir VA, Seifer DB, Barad DH, Sen A, Gleicher N. Potential therapeutic applications of human anti-Müllerian hormone (AMH) analogues in reproductive medicine. J Assist Reprod Genet 2017; 34:1105-1113. [PMID: 28643088 PMCID: PMC5581791 DOI: 10.1007/s10815-017-0977-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022] Open
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily are key regulators of various physiological processes. Anti-Müllerian hormone (AMH) which is also commonly known as Müllerian-inhibiting substance (MIS) is a member of the TGF-beta superfamily and an important regulator of reproductive organ differentiation and ovarian follicular development. While AMH has been used for diagnostic purposes as a biomarker for over 15 years, new potential therapeutic applications of recombinant human AMH analogues are now emerging as pharmacologic agents in reproductive medicine. Therapeutic uses of AMH in gonadal tissue may provide a unique opportunity to address a broad range of reproductive themes, like contraception, ovulation induction, onset of menopause, and fertility preservation, as well as specific disease conditions, such as polycystic ovarian syndrome (PCOS) and cancers of the reproductive tract. This review explores the most promising therapeutic applications for a novel class of drugs known as AMH analogues with agonist and antagonist functions.
Collapse
Affiliation(s)
- Vitaly A Kushnir
- Center for Human Reproduction, 21 East 69th Street, New York, NY, 10021, USA.
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - David B Seifer
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - David H Barad
- Center for Human Reproduction, 21 East 69th Street, New York, NY, 10021, USA
- Foundation for Reproductive Medicine, New York, NY, USA
| | - Aritro Sen
- Center for Human Reproduction, 21 East 69th Street, New York, NY, 10021, USA
- Division of Endocrinology & Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Norbert Gleicher
- Center for Human Reproduction, 21 East 69th Street, New York, NY, 10021, USA
- Foundation for Reproductive Medicine, New York, NY, USA
- Department of Obstetrics and Gynecology, University of Vienna School of Medicine, Vienna, Austria
- The Rockefeller University, New York, NY, USA
| |
Collapse
|
4
|
Kersual N, Garambois V, Chardès T, Pouget JP, Salhi I, Bascoul-Mollevi C, Bibeau F, Busson M, Vié H, Clémenceau B, Behrens CK, Estupina P, Pèlegrin A, Navarro-Teulon I. The human Müllerian inhibiting substance type II receptor as immunotherapy target for ovarian cancer. Validation using the mAb 12G4. MAbs 2015; 6:1314-26. [PMID: 25517316 DOI: 10.4161/mabs.29316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic malignancies. The monoclonal antibody 12G4 specifically recognizes the human Müllerian inhibiting substance type II receptor (MISRII) that is strongly expressed in human granulosa cell tumors (GCT) and in the majority of human epithelial ovarian cancers (EOC). To determine whether MISRII represents an attractive target for antibody-based tumor therapy, we first confirmed by immunohistochemistry with 12G4 its expression in all tested GCT samples (4/4) and all, but one, EOC human tissue specimens (13/14). We then demonstrated in vitro the internalization of 12G4 in MISRII(high)COV434 cells after binding to MISRII and its ability to increase the apoptosis rate (FACS, DNA fragmentation) in MISRII(high)COV434 (GCT) and MISRII(medium)NIH-OVCAR-3 (EOC) cells that express different levels of MISRII. A standard (51)Cr release assay showed that 12G4 mediates antibody-dependent cell-meditated cytotoxicity. Finally, in vivo assessment of 12G4 anti-tumor effects showed a significant reduction of tumor growth and an increase of the median survival time in mice xenografted with MISRII(high)COV434 or MISRII(medium)NIH-OVCAR-3 cells and treated with 12G4 in comparison to controls treated with an irrelevant antibody. Altogether, our data indicate that MISRII is a new promising target for the control of ovarian GCTs and EOCs. A humanized version of the 12G4 antibody, named 3C23K, is in development for the targeted therapy of MISRII-positive gynecologic cancers.
Collapse
Affiliation(s)
- Nathalie Kersual
- a IRCM; Institut de Recherche en Cancérologie de Montpellier ; Montpellier ; France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sklavos MM, Zhou CK, Pinto LA, Cook MB. Prediagnostic circulating anti-Müllerian hormone concentrations are not associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2014; 23:2597-602. [PMID: 25159294 PMCID: PMC4221416 DOI: 10.1158/1055-9965.epi-14-0803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite considerable research, the pathogenesis of prostate cancer remains poorly understood. Meanwhile, PSA testing has shifted prostate cancer case populations for study to include a greater proportion of asymptomatic and indolent disease. Thus, efforts to identify prostate cancer biomarkers-particularly for aggressive disease-are required to elucidate pathogenesis and aid screening efficacy. Current evidence suggests that decreased circulating concentrations of the testis-derived, TGFβ family peptide hormone-anti-Müllerian hormone (AMH)-may be associated with prostate cancer pathogenesis. To test this hypothesis, we measured AMH concentrations in prediagnostic (cohort baseline) sera using the Beckman Coulter AMH Gen II ELISA in 1,000 cases and 1,000 controls nested within the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Controls were frequency matched to cases on age at entry, enrollment year, and years of follow-up. Unconditional logistic regression models, adjusted for age at randomization, were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CI). We found that prediagnostic serologic AMH concentrations were not significantly associated with total (ORQ4 vs. Q1 = 1.15; 95% CI, 0.89-1.48; Ptrend = 0.13), aggressive (ORQ4 vs. Q1 = 1.14; 95% CI, 0.80-1.63; Ptrend = 0.51), or nonaggressive (ORQ4 vs. Q1 = 1.22; 95% CI, 0.91-1.63; Ptrend = 0.07) prostate cancer risks. Different definitions of aggressive disease did not meaningfully alter these results. Despite in vitro studies linking AMH to prostate cancer, this first analysis of prediagnostic, circulating AMH concentrations in men provides no evidence for an association with prostate cancer risk.
Collapse
Affiliation(s)
- Martha M Sklavos
- Human Papillomavirus Immunology Laboratory, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Cindy Ke Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland. Department of Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia
| | - Ligia A Pinto
- Human Papillomavirus Immunology Laboratory, Leidos Biomedical Research, Incorporated, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
6
|
Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc Natl Acad Sci U S A 2010; 107:18874-9. [PMID: 20952655 DOI: 10.1073/pnas.1012667107] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells are proposed to be tumor-initiating cells capable of tumorigenesis, recurrence, metastasis, and drug resistance, and, like somatic stem cells, are thought to be capable of unlimited self-renewal and, when stimulated, proliferation and differentiation. Here we select cells by expression of a panel of markers to enrich for a population with stem cell-like characteristics. A panel of eight was initially selected from 95 human cell surface antigens as each was shared among human ovarian primary cancers, ovarian cancer cell lines, and normal fimbria. A total of 150 combinations of markers were reduced to a panel of three--CD44, CD24, and Epcam--which selected, in three ovarian cancer cell lines, those cells which best formed colonies. Cells expressing CD44, CD24, and Epcam exhibited stem cell characteristics of shorter tumor-free intervals in vivo after limiting dilution, and enhanced migration in invasion assays in vitro. Also, doxorubicin, cisplatin, and paclitaxel increased this enriched population which, conversely, was significantly inhibited by Müllerian inhibiting substance (MIS) or the MIS mimetic SP600125. These findings demonstrate that flow cytometry can be used to detect a population which shows differential drug sensitivity, and imply that treatment of patients can be individualized to target both stem/progenitor cell enriched and nonenriched subpopulations. The findings also suggest that this population, amenable to isolation by flow cytometry, can be used to screen for novel treatment paradigms, including biologic agents such as MIS, which will improve outcomes for patients with ovarian cancer.
Collapse
|