Vasilchenko AS, Rogozhin EA, Vasilchenko AV, Kartashova OL, Sycheva MV. Novel haemoglobin-derived antimicrobial peptides from chicken (Gallus gallus) blood: purification, structural aspects and biological activity.
J Appl Microbiol 2016;
121:1546-1557. [PMID:
27583823 DOI:
10.1111/jam.13286]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 11/28/2022]
Abstract
AIM
To purify and characterize antimicrobial peptides derived from the acid extract of Gallus gallus blood cells.
METHODS AND RESULTS
Two polypeptides (i.e. CHb-1 and CHb-2) with antibacterial activity were detected in the acidic extract of blood cells from chicken (G. gallus). The isolated peptides that possessed a potent antibacterial activity were purified using a two-step chromatography procedure that involved solid-phase extraction of a total protein/peptide extract followed by thin fractionation by reversed-phase high performance liquid chromatography (RP-HPLC). The molecular masses of the purified peptides were similar and were 4824·4 and 4825·2 Da, which have been measured by matrix-assisted laser desorption/ionization mass spectrometry (MALDI TOF MS). Their amino acid sequences were determined by Edman degradation and showed that the peptides were fully identical to the two fragments of G. gallus α-haemoglobin localized into different subunits (A and D respectively). The peptides were active in micromolar concentrations against Gram-negative Escherichia coli K12 TG1. Using the 1-N-phenylnaphthylamine, the FITC-dextran labelled probes and the live/dead staining allowed to show the hemocidin mode of action and estimate the pore size.
CONCLUSION
In this study, for the first time, α-haemoglobin from chicken (G. gallus) has been investigated as a donor of the two high homologous native peptide fragments that possess potent antibacterial activity in vitro. These are membrane-active peptides and their mechanism of action against E. coli involves a toroidal pore formation.
SIGNIFICANCE AND IMPACT OF THE STUDY
The obtained results expand the perception of the role of haemoglobin in a living system, describing it as a source of multifunction substances. Additionally, the data presented in this paper may contribute to the development of new, cost-effective, antimicrobial agents.
Collapse