1
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
2
|
Shumyantseva VV, Koroleva PI, Bulko TV, Sergeev GV, Usanov SA. Predicting drug-drug interactions by electrochemically driven cytochrome P450 3A4 reactions. Drug Metab Pers Ther 2021; 37:241-248. [PMID: 34860476 DOI: 10.1515/dmpt-2021-0116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Human cytochrome P450 3A4 is the most abundant hepatic and intestinal Phase I enzyme that metabolizes approximately 60% marketed drugs. Simultaneous administration of several drugs may result in appearance of drug-drug interaction. Due to the great interest in the combination therapy, the exploration of the role of drug as "perpetrator" or "victim" is important task in pharmacology. In this work the model systems based on electrochemically driven cytochrome P450 3A4 for the analysis of drug combinations was used. We have shown that the analysis of electrochemical parameters of cytochrome P450 3A4 and especially, potential of the start of catalysis, Eonset, possess predictive properties in the determination of the leading ("perpetrator") properties of drug. Based on these experimental data, we concluded, that the more positive potential of the start of catalysis, Eonset, the more pronounced the role of drug as leading medication. METHODS Electrochemically driven cytochrome P450 3A4 was used as probe and measuring tool for the estimation of the role of interacting drugs. RESULTS It is shown that the electrochemical non-invasive model systems for monitoring the catalytic activity of cytochrome P450 3A4 can be used as prognostic devise in assessment of drug/drug interacting medications. CONCLUSIONS Cytochrome P450 3A4 activity was studied in electrochemically driven system. Method was implemented to monitor drug/drug interactions. Based on the obtained experimental data, we can conclude that electrochemical parameter such as potential of onset of catalysis, Eonset, has predictive efficiency in assessment of drug/drug interacting medications in the case of the co-administration.
Collapse
Affiliation(s)
- Victoria V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | | | | | |
Collapse
|
3
|
All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135579] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Makhova AA, Shikh EV, Bulko TV, Sizova ZM, Shumyantseva VV. The influence of taurine and L-carnitine on 6 β-hydroxycortisol/cortisol ratio in human urine of healthy volunteers. Drug Metab Pers Ther 2019; 34:dmpt-2019-0013. [PMID: 31603853 DOI: 10.1515/dmpt-2019-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022]
Abstract
Background Cytochrome P450s (CYPs, EC 1.14.14.1) are the main enzymes of drug metabolism. The functional significance of CYPs also includes the metabolism of foreign chemicals and endogenic biologically active compounds. The CYP3A4 isoform contributes to the metabolism of about half of all marketed medicinal preparations. The aim of this study was to investigate the effects of two biologically active compounds: 2-aminoethane-sulfonic acid (taurine) and 3-hydroxy-4-trimethylaminobutyrate (L-carnitine) on urinary 6β-hydroxycortisol/cortisol (6β-OHC/cortisol) metabolic ratio as a biomarker of the CYP3A4 activity of healthy volunteers. Taurine is used for the treatment of chronic heart failure and liver disease. Cardiologists, nephrologists, neurologists, gerontologists in addition to the main etiopathogenetic therapies, use L-carnitine. The quantification of the 6β-OHC/cortisol metabolic ratio as a biomarker of CYP3A4 activity in human urine was used for the assessment of CYP3A4 catalytic activity as a non-invasive test. Methods The study included 18 healthy male volunteers (aged from 18 to 35 years old). The volunteers took taurine in a dose of 500 mg twice a day or L-carnitine in a dose of 2.5 mL 3 times a day for 14 consecutive days. The test drug was given 20 min before meals. The collection of urine samples was performed before and after 3, 7, 10, and 14 days after taurine intake. The metabolic ratio of 6β-OHC/cortisol in morning spot urine samples was studied by the liquid chromatography/mass spectroscopy (LC/MS) method. Results The ratio of 6-6β-OHC/cortisol was used as a biomarker to study the taurine and L-carnitine influence on CYP3A4 metabolism of cortisol. The ratio of urinary 6β-OCH/cortisol in the morning urine samples of volunteers before the beginning of taurine therapy (baseline ratio) was 2.71 ± 0.2. Seven days after the administration of taurine in a dose of 500 mg twice a day, the 6β-OCH/cortisol ratio was 3.3 ± 0.2, which indicated the increased catalytic activity of CYP3A4 towards cortisol. As for the L-carnitine supplementation, analysis of the 6β-OCH/cortisol ratio in the urine for 14 days did not show any significant changes in this baseline ratio, indicating the lack of L-carnitine influence on the catalytic activity of CYP3A4 to cortisol. Conclusions The results obtained demonstrated the influence of taurine on 6β-OCH/cortisol metabolic ratio as a biomarker of CYP3A4 catalytic activity to cortisol. L-carnitine did not affect the activity of CYP3A4. The lack of a clinically meaningful effect of L-carnitine was established.
Collapse
Affiliation(s)
- Anna A Makhova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eugenia V Shikh
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Zhanna M Sizova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
5
|
Shumyantseva VV, Makhova AA, Shikh EV, Bulko TV, Kuzikov AV, Masamrekh RA, Shkel T, Usanov S, Gilep A, Archakov AI. Bioelectrochemical Systems as Technologies for Studying Drug Interactions Related to Cytochrome P450. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0567-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Masamrekh R, Kuzikov A, Veselovsky A, Toropygin I, Shkel T, Strushkevich N, Gilep A, Usanov S, Archakov A, Shumyantseva V. Interaction of 17α-hydroxylase, 17(20)-lyase (CYP17A1) inhibitors – abiraterone and galeterone – with human sterol 14α-demethylase (CYP51A1). J Inorg Biochem 2018; 186:24-33. [DOI: 10.1016/j.jinorgbio.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
|
7
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. Methods for Determination of Functional Activity of Cytochrome P450 Isoenzymes. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2018. [DOI: 10.1134/s1990750818030046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Kuzikov AV, Masamrekh RA, Archakov AI, Shumyantseva VV. [Methods for determining of cytochrome P450 isozymes functional activity]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:149-168. [PMID: 29723145 DOI: 10.18097/pbmc20186402149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review is dedicated to modern methods and technologies for determining of cytochrome P450 isozymes functional activity, such as absorbance and fluorescent spectroscopy, electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), Raman, Mossbauer, and X-ray spectroscopy, surface plasmon resonance (SPR), atomic force microscopy (AFM). Methods of molecular genetic analysis were reviewed from personalized medicine point of view. The use of chromate-mass-spectrometric methods for cytochrome P450-dependent catalytic reactions' products was discussed. The review covers modern electrochemical systems based on cytochrome P450 isozymes for their catalytic activity analysis, their use in practice and further development perspectives for experimental pharmacology, biotechnology and translational medicine.
Collapse
Affiliation(s)
- A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| |
Collapse
|
9
|
Behrendorff JBYH, Gillam EMJ. Prospects for Applying Synthetic Biology to Toxicology: Future Opportunities and Current Limitations for the Repurposing of Cytochrome P450 Systems. Chem Res Toxicol 2016; 30:453-468. [DOI: 10.1021/acs.chemrestox.6b00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Elizabeth M. J. Gillam
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
10
|
Shumyantseva VV, Bulko TV, Suprun EV, Kuzikov AV, Agafonova LE, Archakov AI. [Electrochemical methods for biomedical investigations]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:188-202. [PMID: 25978386 DOI: 10.18097/pbmc20156102188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the review, authors discussed recently published experimental data concerning highly sensitive electrochemical methods and technologies for biomedical investigations in the postgenomic era. Developments in electrochemical biosensors systems for the analysis of various bio objects are also considered: cytochrome P450s, cardiac markers, bacterial cells, the analysis of proteins based on electro oxidized amino acids as a tool for analysis of conformational events. The electroanalysis of catalytic activity of cytochromes P450 allowed developing system for screening of potential substrates, inhibitors or modulators of catalytic functions of this class of hemoproteins. The highly sensitive quartz crystal microbalance (QCM) immunosensor has been developed for analysis of bio affinity interactions of antibodies with troponin I in plasma. The QCM technique allowed real-time monitoring of the kinetic differences in specific interactions and nonspecific sorption, with out multiple labeling procedures and separation steps. The affinity binding process was characterized by the association (ka) and the dissociation (kd) kinetic constants and the equilibrium association (K) constant, calculated using experimental data. Based on the electroactivity of bacterial cells, the electrochemical system for determination of sensitivity of the microbial cells to antibiotics cefepime, ampicillin, amikacin, and erythromycin was proposed. It was shown that the minimally detectable cell number corresponds to 106 CFU per electrode. The electrochemical method allows estimating the degree of E.coli JM109 cells resistance to antibiotics within 2-5 h. Electrosynthesis of polymeric analogs of antibodies for myoglobin (molecularly imprinted polymer, MIP) on the surface of graphite screen-printed electrodes as sensor elements with o- phenylenediamine as the functional monomer was developed. Molecularly imprinted polymers demonstrate selective complementary binding of a template protein molecule (myoglobin) by the "key-lock" principle.
Collapse
Affiliation(s)
- V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; IBMC-EcoBioPharm Company, Moscow, Russia
| | - T V Bulko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Suprun
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
11
|
Shumyantseva VV, Makhova AA, Bulko TV, Bernhardt R, Kuzikov AV, Shich EV, Kukes VG, Archakov AI. Taurine modulates catalytic activity of cytochrome P450 3A4. BIOCHEMISTRY (MOSCOW) 2015; 80:366-73. [DOI: 10.1134/s0006297915030116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 2014; 98:6185-203. [PMID: 24848420 DOI: 10.1007/s00253-014-5767-7] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Germany,
| | | |
Collapse
|
13
|
Ménard A, Huang Y, Karam P, Cosa G, Auclair K. Site-specific fluorescent labeling and oriented immobilization of a triple mutant of CYP3A4 via C64. Bioconjug Chem 2012; 23:826-36. [PMID: 22433037 DOI: 10.1021/bc200672s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of site-specific bioconjugates of proteins is highly desired for a number of biophysical and nanotechnological applications. To this end, many strategies have been developed that allow the specific modification of certain canonical amino acids and, more recently, noncanonical functional groups. P450 enzymes are heme-dependent monooxygenases involved in xenobiotic metabolism and in the biosynthesis of a variety of secondary metabolites. We became interested in the site-specific modification of these enzymes, CYP3A4 in particular, through our studies of their in vitro biocatalytic properties and our desire to exploit their remarkable ability to oxidize unactivated C-H bonds in a regio- and stereospecific manner. Obtained via a partial cysteine-depletion approach, a functional triple mutant of CYP3A4 (C98S/C239S/C468G) is reported here which is singly modified at C64 by maleimide-containing groups. While cysteine-labeling of the wild-type enzyme abolished >90% of its enzymatic activity, this mutant retained ≥75% of the activity of the unmodified wild-type enzyme with 9 of the 18 maleimides that were tested. These included both fluorescent and solid-supported maleimides. The loss of activity observed after labeling with some maleimides is attributed to direct enzyme inhibition rather than to steric effects. We also demonstrate the functional immobilization of this mutant on maleimide-functionalized agarose resin and silica microspheres.
Collapse
Affiliation(s)
- Amélie Ménard
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada, H3A 0B8
| | | | | | | | | |
Collapse
|
14
|
Rodríguez J, Ramírez AS, Suárez MF, Soto CY. Electrochemical monitoring of the metabolic activity of mycobacteria in culture. Antonie van Leeuwenhoek 2012; 102:193-201. [PMID: 22453520 DOI: 10.1007/s10482-012-9727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/15/2012] [Indexed: 01/02/2023]
Abstract
Mycobacterial metabolic activity is typically measured using time-consuming manual methods based on nutrient consumption, nucleic acid synthesis or reduction of tetrazolium salts. In this study, we propose much simpler electrochemical methods for continuous monitoring of the metabolic activity of mycobacteria in culture. Chronoamperometry and chronopotentiometry were used to detect metabolic activity of both slow-growing and fast-growing mycobacteria using a potentiostat with 2D-electrochemical cell. Electrochemical measurements were able to detect statistically significant differences in the metabolic activity of approximately 10(7) mycobacteria in different growth conditions, within less than 24 h of mycobacterial culture. The metabolic activity of mycobacteria measured by the used electrochemical methods correlated well with changes in general respiratory conditions within the cells as it was evaluated by different biochemical tests. Chronoamperometry and chronopotentiometry allowed measurement of mycobacterial metabolic activity without invasive chemical reactions, at minimal bacterial load and when metabolic response of mycobacteria occurs quickly. The proposed methodology is simple, rapid and cost-effective, and it is expected that both in vitro and in vivo metabolic activity of human mycobacterial pathogens as Mycobacterium tuberculosis can be measured when the implementation of this method to analyze virulent strains is adapted.
Collapse
Affiliation(s)
- Jimmy Rodríguez
- Chemistry Department, Science Faculty, Universidad Nacional de Colombia, Carrera 30, No 45-03, Ciudad Universitaria, Bogotá, Colombia
| | | | | | | |
Collapse
|
15
|
Shumyantseva VV, Shich EV, Machova AA, Bulko TV, Kukes VG, Sizova OS, Ramenskaya GV, Usanov SA, Archakov AI. The influence of B-group vitamins on monooxygenase activity of cytochrome P450 3A4: Pharmacokinetics and electro analysis of the catalytic properties. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2012. [DOI: 10.1134/s1990750812010143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Shumiantseva VV, Bulko TV, Misharin AI, Archakov AA. [Screening of potential substrates or inhibitors of cytochrome P450 17A1 (CYP17A1) by electrochemical methods]. BIOMEDITSINSKAIA KHIMIIA 2011; 57:402-409. [PMID: 22066265 DOI: 10.18097/pbmc20115704402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The electrochemical reduction of the recombinant form of human cytochrome P450 17A1 (CYP17A1) was investigated. Hemeprotein was immobilized on electrode modified with biocompatable nanocomposite material based on the membrane-like synthetic surfactant didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of DDAB/Au/CYP17A1 electrodes were investigated with cyclic voltammetry, square wave voltammetry, and differential pulse voltammetry. Analysis of electrochemical behaviour of cytochrome P450 17A1 was conducted in the presence of substrate pregnenolone (1), inhibitor ketoconazole (2), and in the presence of synthetic derivatives of pregnenolone: acetylpregnenolone (3), cyclopregnenolone (4), and tetrabrompregnenolone (5). Ketoconazole, azole inhibitor of cytochromes P450, blocked catalytic current in the presence of substrate pregnenolone (1). Compounds 3-5 did not demonstrate substrate properties towards electrode/CYP17A1 system. Compound 3 did not block catalytic activity towards pregnenolone, but compounds 4 and 5 inhibited such activity. Electrochemical reduction of CYP17A1 may serve as an adequate substitution of the reconstituted system which requires additional redox partners - for the exhibition of catalytic activity of hemoproteins of the cytochrome P450 superfamily.
Collapse
|
17
|
Fantuzzi A, Mak LH, Capria E, Dodhia V, Panicco P, Collins S, Gilardi G. A New Standardized Electrochemical Array for Drug Metabolic Profiling with Human Cytochromes P450. Anal Chem 2011; 83:3831-9. [DOI: 10.1021/ac200309q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Fantuzzi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Lok Hang Mak
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Ennio Capria
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Vikash Dodhia
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Paola Panicco
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Stephen Collins
- NanoBioDesign Ltd., Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom
| | - Gianfranco Gilardi
- Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| |
Collapse
|
18
|
Shumyantseva VV, Bulko TV, Misharin AY, Archakov AI. Screening of potential substrates or inhibitors of cytochrome P450 17A1 (CYP17A1) by electrochemical methods. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Shumiantseva VV, Suprun EV, Bulko TV, Dobrynina OV, Archakov AI. [Sensor systems for medical application based on hemoproteins and nanocomposite materials]. BIOMEDITSINSKAIA KHIMIIA 2011; 56:55-71. [PMID: 21328911 DOI: 10.18097/pbmc20105601055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances in nanotechnologies stimulate the development of sensor systems based on nanocomposite materials. This review discusses the prospects and challenges of sensors coupled with functionally important for medicine hemoproteins and nanoscale materials. Authors summarized their own experimental results and literature data on hemoprotein-based sensor systems. Mechanisms and the main function principles of electrochemical nanosensors are also discussed.
Collapse
|
20
|
Shumyantseva VV, Bulko TV, Suprun EV, Chalenko YM, Yu.Vagin M, Rudakov YO, Shatskaya MA, Archakov AI. Electrochemical investigations of cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:94-101. [DOI: 10.1016/j.bbapap.2010.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/22/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
|
21
|
Shumyantseva VV, Suprun EV, Bulko TV, Dobrynina OV, Archakov AI. Sensor systems for medical application based on hemoproteins and nanocomposite materials. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s199075081001004x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|