1
|
Makarov GI, Makarova TM. SecM leader peptide as an allosteric translation inhibitor: a molecular dynamics study. Biochim Biophys Acta Gen Subj 2024; 1868:130715. [PMID: 39332784 DOI: 10.1016/j.bbagen.2024.130715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The SecM leader peptide regulates translation of the SecA protein, being a part of the Sec translocase, that reversibly arrests the ribosome. In the present study the structure of the SecM complex with the E. coli A/A,P/P-ribosome was obtained by means of docking and molecular dynamics simulation methods. It has been established that binding of the SecM leader peptide in the nascent peptide exit tunnel leads to a turn of the aminoacylating proline residue away from the C-terminal SecM glycine residue, which is adverse to the peptidyltransferase reaction. Besides, the SecM binding leads to a disturbance of the A-tRNA contacts with the tip of the H38 helix of the 23S rRNA (the A-site finger, ASF) and ribosomal protein uL16. Allosteric interrelation between these events has been proved by a construction of networks of concerted changes in non-covalent interactions throughout the whole ribosome, whereupon the A1614 and A751 residues of the 23S rRNA in the exit tunnel that formed stacking interactions with the SecM residues during the MD simulations, were found to be the principal triggers, inducing crucial alterations in the A-tRNA binding. The allosteric signal from the SecM peptide to the ASF, according to our model, is transmitted through ribosomal protein uL22, and there is reason to believe that this sensor is used not only by the SecM leader peptide, but also by other peptides that cause translation arrest.
Collapse
Affiliation(s)
- G I Makarov
- South Ural State University, 454080 Chelyabinsk, Russia.
| | - T M Makarova
- South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
2
|
Chan AI, Sawant MS, Burdick DJ, Tom J, Song A, Cunningham CN. Evaluating Translational Efficiency of Noncanonical Amino Acids to Inform the Design of Druglike Peptide Libraries. ACS Chem Biol 2023; 18:81-90. [PMID: 36607609 PMCID: PMC9872084 DOI: 10.1021/acschembio.2c00712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in genetic code reprogramming have allowed the site-specific incorporation of noncanonical functionalities into polypeptides and proteins, providing access to wide swaths of chemical space via in vitro translation techniques like mRNA display. Prior efforts have established that the translation machinery can tolerate amino acids with modifications to both the peptide backbone and side chains, greatly broadening the chemical space that can be interrogated in ligand discovery efforts. However, existing methods for confirming the translation yield of new amino acid building blocks for these technologies necessitate multistep workups and, more importantly, are not relevant for measuring translation within the context of a combinatorial library consisting of multiple noncanonical amino acids. In this study, we developed a luminescence-based assay to rapidly assess the relative translation yield of any noncanonical amino acid in real time. Among the 59 amino acids tested here, we found that many translate with high efficiency, but translational yield is not necessarily correlated to whether the amino acid is proteinogenic or has high tRNA acylation efficiency. Interestingly, we found that single-template translation data can inform the library-scale translation yield and that shorter peptide libraries are more tolerant of lower-efficiency amino acid monomers. Together our data show that the luminescence-based assay described herein is an essential tool in evaluating new building blocks and codon table designs within mRNA display toward the goal of developing druglike peptide-based libraries for drug discovery campaigns.
Collapse
Affiliation(s)
- Alix I Chan
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Manali S. Sawant
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Daniel J. Burdick
- Department
of Discovery Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Jeffrey Tom
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Aimin Song
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States,
| |
Collapse
|
3
|
Khairullina ZZ, Makarov GI, Tereshchenkov AG, Buev VS, Lukianov DA, Polshakov VI, Tashlitsky VN, Osterman IA, Sumbatyan NV. Conjugates of Desmycosin with Fragments of Antimicrobial Peptide Oncocin: Synthesis, Antibacterial Activity, Interaction with Ribosome. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:871-889. [PMID: 36180983 DOI: 10.1134/s0006297922090024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
Design and synthesis of conjugates consisting of the macrolide antibiotic desmycosin and fragments of the antibacterial peptide oncocin were performed in attempt to develop new antimicrobial compounds. New compounds were shown to bind to the E. coli 70S ribosomes, to inhibit bacterial protein synthesis in vitro, as well as to suppress bacterial growth. The conjugates of N-terminal hexa- and tripeptide fragments of oncocin and 3,2',4''-triacetyldesmycosin were found to be active against some strains of macrolide-resistant bacteria. By simulating molecular dynamics of the complexes of these compounds with the wild-type bacterial ribosomes and with ribosomes, containing A2059G 23S RNA mutation, the specific structural features of their interactions were revealed.
Collapse
Affiliation(s)
| | | | - Andrey G Tereshchenkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Vitaly S Buev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitrii A Lukianov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vadim N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya A Osterman
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia
| | - Natalia V Sumbatyan
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
4
|
Khairullina ZZ, Tereshchenkov AG, Zavyalova SA, Komarova ES, Lukianov DA, Tashlitsky VN, Osterman IA, Sumbatyan NV. Interaction of Chloramphenicol Cationic Peptide Analogues with the Ribosome. BIOCHEMISTRY (MOSCOW) 2021; 85:1443-1457. [PMID: 33280584 DOI: 10.1134/s0006297920110127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Virtual screening of all possible tripeptide analogues of chloramphenicol was performed using molecular docking to evaluate their affinity to bacterial ribosomes. Chloramphenicol analogues that demonstrated the lowest calculated energy of interaction with ribosomes were synthesized. Chloramphenicol amine (CAM) derivatives, which contained specific peptide fragments from the proline-rich antimicrobial peptides were produced. It was demonstrated using displacement of the fluorescent erythromycin analogue from its complex with ribosomes that the novel peptide analogues of chloramphenicol were able to bind bacterial ribosome; all the designed tripeptide analogues and one of the chloramphenicol amine derivatives containing fragment of the proline-rich antimicrobial peptides exhibited significantly greater affinity to Escherichia coli ribosome than chloramphenicol. Correlation between the calculated and experimentally evaluated levels of the ligand efficiencies was observed. In vitro protein biosynthesis inhibition assay revealed, that the RAW-CAM analogue shows activity at the level of chloramphenicol. These data were confirmed by the chemical probing assay, according to which binding pattern of this analogue in the nascent peptide exit tunnel was similar to chloramphenicol.
Collapse
Affiliation(s)
- Z Z Khairullina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Tereshchenkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - S A Zavyalova
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - E S Komarova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia.,Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - D A Lukianov
- Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - V N Tashlitsky
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - I A Osterman
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - N V Sumbatyan
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Osterman IA, Dontsova OA, Sergiev PV. rRNA Methylation and Antibiotic Resistance. BIOCHEMISTRY (MOSCOW) 2021; 85:1335-1349. [PMID: 33280577 DOI: 10.1134/s000629792011005x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methylation of nucleotides in rRNA is one of the basic mechanisms of bacterial resistance to protein synthesis inhibitors. The genes for corresponding methyltransferases have been found in producer strains and clinical isolates of pathogenic bacteria. In some cases, rRNA methylation by housekeeping enzymes is, on the contrary, required for the action of antibiotics. The effects of rRNA modifications associated with antibiotic efficacy may be cooperative or mutually exclusive. Evolutionary relationships between the systems of rRNA modification by housekeeping enzymes and antibiotic resistance-related methyltransferases are of particular interest. In this review, we discuss the above topics in detail.
Collapse
Affiliation(s)
- I A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - P V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Adaligil E, Song A, Hallenbeck KK, Cunningham CN, Fairbrother WJ. Ribosomal Synthesis of Macrocyclic Peptides with β 2- and β 2,3-Homo-Amino Acids for the Development of Natural Product-Like Combinatorial Libraries. ACS Chem Biol 2021; 16:1011-1018. [PMID: 34008946 DOI: 10.1021/acschembio.1c00062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of large, natural-product-like, combinatorial macrocyclic peptide libraries is essential in the quest to develop therapeutics for "undruggable" cellular targets. Herein we report the ribosomal synthesis of macrocyclic peptides containing one or more β2-homo-amino acids (β2haa) to enable their incorporation into mRNA display-based selection libraries. We confirmed the compatibility of 14 β2-homo-amino acids, (S)- and (R)-stereochemistry, for single incorporation into a macrocyclic peptide with low to high translation efficiency. Interestingly, N-methylation of the backbone amide of β2haa prevented the incorporation of this amino acid subclass by the ribosome. Additionally, we designed and incorporated several α,β-disubstituted β2,3-homo-amino acids (β2,3haa) with different R-groups on the α- and β-carbons of the same amino acid. Incorporation of these β2,3haa enables increased diversity in a single position of a macrocyclic peptide without significantly increasing the overall molecular weight, which is an important consideration for passive cell permeability. We also successfully incorporated multiple (S)-β2hAla into a single macrocycle with other non-proteinogenic amino acids, confirming that this class of β-amino acid is suitable for development of large scale macrocyclic peptide libraries.
Collapse
Affiliation(s)
- Emel Adaligil
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Aimin Song
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Kenneth K. Hallenbeck
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Wayne J. Fairbrother
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Makarova T, Bogdanov A. Allosteric regulation of the ribosomal A site revealed by molecular dynamics simulations. Biochimie 2019; 167:179-186. [DOI: 10.1016/j.biochi.2019.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/26/2019] [Indexed: 11/25/2022]
|
8
|
de Farias ST, Jheeta S, Prosdocimi F. Viruses as a survival strategy in the armory of life. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2019; 41:45. [PMID: 31612293 DOI: 10.1007/s40656-019-0287-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Viruses have generally been thought of as infectious agents. New data on mimivirus, however, suggests a reinterpretation of this thought. Earth's biosphere seems to contain many more viruses than previously thought and they are relevant in the maintenance of ecosystems and biodiversity. Viruses are not considered to be alive because they are not free-living entities and do not have cellular units. Current hypotheses indicate that some viruses may have been the result of genomic reduction of cellular life forms. However, new studies relating to the origins of biological systems suggest that viruses could also have originated during the transition from First to the Last Universal Common Ancestor (from FUCA to LUCA). Within this setting, life has been established as chemical informational system and could be interpreted as a macrocode of multiple layers. The first entity to acquire these features was the First Universal Common Ancestor (FUCA) that evolved to an intermediate ancestral that could be named T-LUCA (Transitional-LUCA) and be equated to Woese's concept of progenotes. T-LUCA may have remained as undifferentiated subsystems with viruses-like structures. The net result is that both cellular life forms and viruses shared protein synthesis apparatuses. In short, virus is a strategy of life reached by two paths: T-LUCAs like entities and the reduction of cellular life forms.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
- Departamento de Filosofia, Programa de Pós-Graduação em Filosofia, Universidade Federal de Santa Catarina, Florianopólis, Santa Catarina, Brazil.
| | - Sohan Jheeta
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Makarova TM, Bogdanov AA. The Ribosome as an Allosterically Regulated Molecular Machine. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523059 DOI: 10.1134/s0006297917130016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome as a complex molecular machine undergoes significant conformational rearrangements during the synthesis of polypeptide chains of proteins. In this review, information obtained using various experimental methods on the internal consistency of such rearrangements is discussed. It is demonstrated that allosteric regulation involves all the main stages of the operation of the ribosome and connects functional elements remote by tens and even hundreds of angstroms. Data obtained using Förster resonance energy transfer (FRET) show that translocation is controlled in general by internal mechanisms of the ribosome, and not by the position of the ligands. Chemical probing data revealed the relationship of such remote sites as the decoding, peptidyl transferase, and GTPase centers of the ribosome. Nevertheless, despite the large amount of experimental data accumulated to date, many details and mechanisms of these phenomena are still not understood. Analysis of these data demonstrates that the development of new approaches is necessary for deciphering the mechanisms of allosteric regulation of the operation of the ribosome.
Collapse
Affiliation(s)
- T M Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
10
|
Suvlu D, Samaratunga S, Thirumalai D, Rasaiah JC. Thermodynamics of Helix-Coil Transitions of Polyalanine in Open Carbon Nanotubes. J Phys Chem Lett 2017; 8:494-499. [PMID: 28060517 DOI: 10.1021/acs.jpclett.6b02620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding structure formation in polypeptide chains and synthetic polymers encapsulated in pores is important in biology and nanotechnology. We present replica exchange molecular dynamics studies of the phase diagram for α-helix formation of capped polyalanine in nanotubes (NT) open to a water reservoir as a function of the NT diameter and hydrophobicity. A helix forms only in a narrow range of diameters, which surprisingly is comparable to the width of the ribosome tunnel. Increasing the hydrophobicity enhances helicity in the NT. Helix formation in polyalanine is driven by a small negative enthalpy and a positive entropy change at ≈300 K, in contrast to the large negative entropy change that destabilizes the helix and favors the coiled state in bulk water. There is an anticorrelation between water density inside the nanotube and structure formation. Confinement-induced helix formation depends on amino acid sequence. There is complete absence of helix in polyglutamine and polyserine confined to a open carbon nanotube.
Collapse
Affiliation(s)
- Dylan Suvlu
- Department of Chemistry, University of Maine , Orono, Maine 04469, United States
| | | | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jayendran C Rasaiah
- Department of Chemistry, University of Maine , Orono, Maine 04469, United States
| |
Collapse
|
11
|
Tereshchenkov AG, Shishkina AV, Karpenko VV, Chertkov VA, Konevega AL, Kasatsky PS, Bogdanov AA, Sumbatyan NV. New Fluorescent Macrolide Derivatives for Studying Interactions of Antibiotics and Their Analogs with the Ribosomal Exit Tunnel. BIOCHEMISTRY (MOSCOW) 2017; 81:1163-1172. [PMID: 27908240 DOI: 10.1134/s0006297916100138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel fluorescent derivatives of macrolide antibiotics related to tylosin bearing rhodamine, fluorescein, Alexa Fluor 488, BODIPY FL, and nitrobenzoxadiazole (NBD) residues were synthesized. The formation of complexes of these compounds with 70S E. coli ribosomes was studied by measuring the fluorescence polarization depending on the ribosome amount at constant concentration of the fluorescent substance. With the synthesized fluorescent tylosin derivatives, the dissociation constants for ribosome complexes with several known antibiotics and macrolide analogs previously obtained were determined. It was found that the fluorescent tylosin derivatives containing BODIPY FL and NBD groups could be used to screen the binding of novel antibiotics to bacterial ribosomes in the macrolide-binding site.
Collapse
Affiliation(s)
- A G Tereshchenkov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tereshchenkov AG, Shishkina AV, Tashlitsky VN, Korshunova GA, Bogdanov AA, Sumbatyan NV. Interaction of Chloramphenicol Tripeptide Analogs with Ribosomes. BIOCHEMISTRY (MOSCOW) 2017; 81:392-400. [PMID: 27293096 DOI: 10.1134/s000629791604009x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chloramphenicol amine peptide derivatives containing tripeptide fragments of regulatory "stop peptides" - MRL, IRA, IWP - were synthesized. The ability of the compounds to form ribosomal complexes was studied by displacement of the fluorescent erythromycin analog from its complex with E. coli ribosomes. It was found that peptide chloramphenicol analogs are able to bind to bacterial ribosomes. The dissociation constants were 4.3-10 µM, which is 100-fold lower than the corresponding values for chloramphenicol amine-ribosome complex. Interaction of the chloramphenicol peptide analogs with ribosomes was simulated by molecular docking, and the most probable contacts of "stop peptide" motifs with the elements of nascent peptide exit tunnel were identified.
Collapse
Affiliation(s)
- A G Tereshchenkov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
13
|
Klich K, Pyta K, Kubicka MM, Ruszkowski P, Celewicz L, Gajecka M, Przybylski P. Synthesis, Antibacterial, and Anticancer Evaluation of Novel Spiramycin-Like Conjugates Containing C(5) Triazole Arm. J Med Chem 2016; 59:7963-73. [PMID: 27501415 DOI: 10.1021/acs.jmedchem.6b00764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Huisgen cycloaddition allowed obtaining of novel triazole-bridged antibiotics (6-16) with the reconstructed C(5) arm of spiramycin. (1)H-(1)H NOESY couplings indicated the structure of novel derivatives in solution and demonstrated that the rebuilt C(5) arm is slightly differently oriented relative to the aglycone part if compared to that of spiramycin (1). Combined analysis of biological data together with experimentally determined lipophilicity (clogP) and solubility show the importance of the chemical nature of the newly introduced triazole C(5) arm in the presence of attractive antibacterial and anticancer potency. The most cytotoxic active triazole conjugates having a hydrophobic and bulky C(5) arm showed higher selectivity toward cancer cell lines (HeLa, KB, MCF-7, Hep-G2, and U87) relative to HDF normal cells than that of the parent spiramycin. Our studies have demonstrated that the aldehyde group is not crucial for the presence of interesting antibacterial [MIC(S. pneumoniae) ∼ 1.2 μM] and anticancer [IC50(HepG2) ∼ 6 μM] properties of 16-membered lactone macrolides based on spiramycin's aglycone.
Collapse
Affiliation(s)
- Katarzyna Klich
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznan, Poland
| | - Krystian Pyta
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznan, Poland
| | - Marcelina M Kubicka
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences , Swiecickiego 4, 60-781 Poznan, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, University of Medical Sciences , Rokietnicka 5a, 60-806 Poznan, Poland
| | - Lech Celewicz
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznan, Poland
| | - Marzena Gajecka
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences , Swiecickiego 4, 60-781 Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences , Strzeszynska 32, 60-479 Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University , Umultowska 89b, 61-614 Poznan, Poland
| |
Collapse
|
14
|
Synthesis, characterisation, cytotoxicity and antibacterial activity of ruthenium(II) and rhodium(III) complexes with sulfur-containing terpyridines. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.12.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Torikai K, Suga H. Ribosomal synthesis of an amphotericin-B inspired macrocycle. J Am Chem Soc 2014; 136:17359-61. [PMID: 25454254 DOI: 10.1021/ja508648s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here we report in vitro ribosomal synthesis of a natural product-like macrocyclic peptide, inspired by the structure of amphotericin B (AmB), an amphiphilic and membrane-interacting antifungal natural product. This AmB-inspired macrocyclic peptide (AmP), one side of which is composed of hydrophobic terpene, and the other side comprises a peptidic chain, was synthesized utilizing flexizyme-assisted in vitro translation via an unusual but successful initiation with a D-cysteine derivative. The established method for the synthesis of AmPs is applicable to the generation of a diverse AmP library coupled with an in vitro display format, with the potential to lead to the discovery of artificial bioactive amphiphilic macrocycles.
Collapse
Affiliation(s)
- Kohei Torikai
- Department of Chemistry, Graduate School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
16
|
Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014; 106:323-45. [PMID: 25040059 DOI: 10.1111/boc.201300081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Shinsapporokeiaikai Hospital, 5-5-35 Ooyachihigashi, Atsubetsuku, Sapporo, 004-0041, Japan
| |
Collapse
|
17
|
Shishkina A, Makarov G, Tereshchenkov A, Korshunova G, Sumbatyan N, Golovin A, Svetlov M, Bogdanov A. Conjugates of amino acids and peptides with 5-o-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel. Bioconjug Chem 2013; 24:1861-9. [PMID: 24090034 DOI: 10.1021/bc400236n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During protein synthesis the nascent polypeptide chain (NC) extends through the ribosomal exit tunnel (NPET). Also, the large group of macrolide antibiotics binds in the nascent peptide exit tunnel. In some cases interaction of NC with NPET leads to the ribosome stalling, a significant event in regulation of translation. In other cases NC-ribosome interactions lead to pauses in translation that play an important role in cotranslational folding of polypeptides emerging from the ribosome. The precise mechanism of NC recognition in NPET as well as factors that determine NC conformation in the ribosomal tunnel are unknown. A number of derivatives of the macrolide antibiotic 5-O-mycaminosyltylonolide (OMT) containing N-acylated amino acid or peptide residues were synthesized in order to study potential sites of NC-NPET interactions. The target compounds were prepared by conjugation of protected amino acids and peptides with the C23 hydroxyl group of the macrolide. These OMT derivatives showed high although varying abilities to inhibit the firefly luciferase synthesis in vitro. Three glycil-containing derivatives appeared to be strong inhibitors of translation, more potent than parental OMT. Molecular dynamics (MD) simulation of complexes of tylosin, OMT, and some of OMT derivatives with the large ribosomal subunit of E. coli illuminated a plausible reason for the high inhibitory activity of Boc-Gly-OMT. In addition, the MD study detected a new putative site of interaction of the nascent polypeptide chain with the NPET walls.
Collapse
Affiliation(s)
- Anna Shishkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory, 1, bldg 40, 119992 Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Caton-Williams J, Hoxhaj R, Fiaz B, Huang Z. Use of a novel 5'-regioselective phosphitylating reagent for one-pot synthesis of nucleoside 5'-triphosphates from unprotected nucleosides. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 1:1.30.1-1.30.21. [PMID: 23512692 PMCID: PMC3655200 DOI: 10.1002/0471142700.nc0130s52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
5'-Triphosphates are building blocks for enzymatic synthesis of DNA and RNA. This unit presents a protocol for convenient synthesis of 2'-deoxyribo- and ribonucleoside 5'-triphosphates (dNTPs and NTPs) from any natural or modified base. This one-pot synthesis can also be employed to prepare triphosphate analogs with a sulfur or selenium atom in place of a non-bridging oxygen atom of the α-phosphate. These S- or Se-modified dNTPs and NTPs can be used to prepare diastereomerically pure phosphorothioate or phosphoroselenoate nucleic acids. Even without extensive purification, the dNTPs or NTPs synthesized by this method are of high quality and can be used directly in DNA polymerization or RNA transcription. Synthesis and purification of the 5'-triphosphates, as well as analysis and confirmation of natural and sulfur- or selenium-modified nucleic acids, are described in this protocol unit.
Collapse
|
19
|
Caton-Williams J, Smith M, Carrasco N, Huang Z. Protection-free one-pot synthesis of 2'-deoxynucleoside 5'-triphosphates and DNA polymerization. Org Lett 2011; 13:4156-9. [PMID: 21790120 DOI: 10.1021/ol201073e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By differentiating the functional groups on nucleosides, we have designed and developed a one-pot synthesis of deoxyribonucleoside 5'-triphosphates without any protection on the nucleosides. A facile synthesis is achieved by generating an in situ phosphitylating reagent that reacts selectively with the 5'-hydroxyl groups of the unprotected nucleosides. The synthesized triphosphates are of high quality and can be effectively incorporated into DNAs by DNA polymerase. This novel approach is straightforward and cost-effective for triphosphate synthesis.
Collapse
|
20
|
Caton-Williams J, Lin L, Smith M, Huang Z. Convenient synthesis of nucleoside 5'-triphosphates for RNA transcription. Chem Commun (Camb) 2011; 47:8142-4. [PMID: 21670833 DOI: 10.1039/c1cc12201k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By generating a selective phosphitylating reagent in situ, nucleoside 5'-triphosphates can be conveniently synthesized in one pot. This novel strategy without nucleoside protection has been developed to largely simplify synthesis of the nucleoside triphosphates. This demonstrated principle can be applied to the 5'-triphosphate synthesis of both native and modified nucleosides.
Collapse
|