1
|
Zavarykina TM, Tyulyandina AS, Khokhlova SV, Khabas GN, Asaturova AV, Nosova YA, Brenner PK, Kapralova MA, Atkarskaya MV, Khodyrev DS, Burdennyi AM, Loginov VI, Stenina MB, Sukhikh GT. Association of Molecular Genetic Markers of TP53, MDM2, and CDKN1A Genes with Progression-Free Survival of Patients with Ovarian Cancer after Platinum-Based Chemotherapy. Bull Exp Biol Med 2020; 169:486-490. [PMID: 32910383 DOI: 10.1007/s10517-020-04915-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 02/04/2023]
Abstract
We studied the association of polymorphic markers of cell cycle control genes (Arg72Pro of the TP53 gene, T(-410)G of the MDM2 gene, and Ser31Arg of the CDKN1A gene) in ovarian cancer and progression-free survival following platinum-based chemotherapy. Tumor tissue samples obtained from 49 patients who had undergone chemotherapy were examined. Patients received standard platinum-based chemotherapy and were observed until disease progression. Polymorphic markers of genes were evaluated by PCR-RFLP and real-time PCR. In patients carrying the G allele of the T(-410)G marker of the MDM2 gene, a decreasing trend was observed in median progression-free survival. An increase in the median progression-free survival was observed in carriers of the Pro allele of the TP53 gene (p=0.045). Furthermore, a stronger association was noted with carriers of the minor Pro/Pro homozygous genotype relative to the Arg/Arg genotype (p=0.007). In the subgroup of patients who underwent optimal or complete cytoreductive surgery, carriage of the minor Arg allele of the Ser31Arg marker (CDN1A gene) was associated with a decrease in the median progression-free survival time (p=0.004).
Collapse
Affiliation(s)
- T M Zavarykina
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - A S Tyulyandina
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Khokhlova
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G N Khabas
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Asaturova
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu A Nosova
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P K Brenner
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M A Kapralova
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.,K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - M V Atkarskaya
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - D S Khodyrev
- Federal Research Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - A M Burdennyi
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - V I Loginov
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M B Stenina
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G T Sukhikh
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Nguyen TAT, Grimm SA, Bushel PR, Li J, Li Y, Bennett BD, Lavender CA, Ward JM, Fargo DC, Anderson CW, Li L, Resnick MA, Menendez D. Revealing a human p53 universe. Nucleic Acids Res 2019; 46:8153-8167. [PMID: 30107566 PMCID: PMC6144829 DOI: 10.1093/nar/gky720] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
p53 transcriptional networks are well-characterized in many organisms. However, a global understanding of requirements for in vivo p53 interactions with DNA and relationships with transcription across human biological systems in response to various p53 activating situations remains limited. Using a common analysis pipeline, we analyzed 41 data sets from genome-wide ChIP-seq studies of which 16 have associated gene expression data, including our recent primary data with normal human lymphocytes. The resulting extensive analysis, accessible at p53 BAER hub via the UCSC browser, provides a robust platform to characterize p53 binding throughout the human genome including direct influence on gene expression and underlying mechanisms. We establish the impact of spacers and mismatches from consensus on p53 binding in vivo and propose that once bound, neither significantly influences the likelihood of expression. Our rigorous approach revealed a large p53 genome-wide cistrome composed of >900 genes directly targeted by p53. Importantly, we identify a core cistrome signature composed of genes appearing in over half the data sets, and we identify signatures that are treatment- or cell-specific, demonstrating new functions for p53 in cell biology. Our analysis reveals a broad homeostatic role for human p53 that is relevant to both basic and translational studies.
Collapse
Affiliation(s)
- Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Pierre R Bushel
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jianying Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yuanyuan Li
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - David C Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA.,Office of Scientific Computing, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carl W Anderson
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Leping Li
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Daniel Menendez
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Garaeva AA, Kovaleva IE, Chumakov PM, Evstafieva AG. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4. Cell Cycle 2016; 15:64-71. [PMID: 26771712 DOI: 10.1080/15384101.2015.1120929] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments.
Collapse
Affiliation(s)
- Alisa A Garaeva
- a Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , Russia.,b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Irina E Kovaleva
- c Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia
| | - Peter M Chumakov
- b Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russia
| | - Alexandra G Evstafieva
- a Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , Russia.,c Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
4
|
Shao JH, Feng GH. Inhibition Mechanism of Novel Pyrazolo[1,5-a]pyrazin-4(5H)-one Derivatives Against Proliferation of A549 and H322 Cancer Cells. ACTA ACUST UNITED AC 2015; 30:260-5. [DOI: 10.1016/s1001-9294(16)30010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Oncolysis by paramyxoviruses: preclinical and clinical studies. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30019-5. [PMID: 26640815 PMCID: PMC4667943 DOI: 10.1038/mto.2015.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.
Collapse
|
6
|
Botcheva K. p53 binding to human genome: crowd control navigation in chromatin context. Front Genet 2014; 5:447. [PMID: 25566329 PMCID: PMC4273661 DOI: 10.3389/fgene.2014.00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022] Open
Abstract
p53 is the most studied human protein because of its role in maintaining genomic stability. Binding to genomic targets is essential for transcription-dependent p53 tumor suppression, but how p53 selects targets remains unclear. Here, the impact of chromatin context on p53 genome-wide binding and targets selection is discussed. It is proposed that p53 genomic binding serves not only to regulate transcription, but to sense epigenomic changes threatening the genomic integrity. The problem of p53 navigating the human genome is discussed with respect to the degenerate p53 binding motif. This discussion relates to the fundamental problem of DNA binding factors navigating large genomes in search for cognate binding sites.
Collapse
Affiliation(s)
- Krassimira Botcheva
- Cell and Molecular Biology Department, Life Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, CA, USA
| |
Collapse
|
7
|
Branco AF, Sampaio SF, Wieckowski MR, Sardão VA, Oliveira PJ. Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: differential activation of stress and survival pathways. Int J Biochem Cell Biol 2013; 45:2379-91. [PMID: 23958426 DOI: 10.1016/j.biocel.2013.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/19/2013] [Accepted: 08/07/2013] [Indexed: 12/11/2022]
Abstract
β-Adrenergic receptor stimulation plays an important role in cardiomyocyte stress responses, which may result in apoptosis and cardiovascular degeneration. We previously demonstrated that toxicity of the β-adrenergic agonist isoproterenol on H9c2 cardiomyoblasts depends on the stage of cell differentiation. We now investigate β-adrenergic receptor downstream signaling pathways and stress responses that explain the impact of muscle cell differentiation on hyper-β-adrenergic stimulation-induced cytotoxicity. When incubated with isoproterenol, differentiated H9c2 muscle cells have increased cytosolic calcium, cyclic-adenosine monophosphate content and oxidative stress, as well as mitochondrial depolarization, increased superoxide anion, loss of subunits from the mitochondrial respiratory chain, decreased Bcl-xL content, increased p53 and phosphorylated-p66Shc as well as activated caspase-3. Undifferentiated H9c2 cells incubated with isoproterenol showed increased Bcl-xL protein and increased superoxide dismutase 2 which may act as protective mechanisms. We conclude that the differentiation of H9c2 is associated with differential regulation of stress responses, which impact the toxicity of several agents, namely those acting through β-adrenergic receptors and resulting in mitochondrial disruption in differentiated cells only.
Collapse
Affiliation(s)
- Ana F Branco
- CNC - Center for Neuroscience and Cell Biology, Largo Marques de Pombal, University of Coimbra, Portugal; Department of Life Sciences, Largo Marques de Pombal, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
8
|
Grinev VV, Ramanouskaya TV, Gloushen SV. Multidimensional control of cell structural robustness. Cell Biol Int 2013; 37:1023-37. [PMID: 23686647 DOI: 10.1002/cbin.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/21/2013] [Indexed: 11/12/2022]
Abstract
Ample adaptive and functional opportunities of a living cell are determined by the complexity of its structural organisation. However, such complexity gives rise to a problem of maintenance of the coherence of inner processes in macroscopic interims and in macroscopic volumes which is necessary to support the structural robustness of a cell. The solution to this problem lies in multidimensional control of the adaptive and functional changes of a cell as well as its self-renewing processes in the context of environmental conditions. Six mechanisms (principles) form the basis of this multidimensional control: regulatory circuits with feedback loops, redundant inner diversity within a cell, multilevel distributed network organisation of a cell, molecular selection within a cell, continuous informational flows and functioning with a reserve of power. In the review we provide detailed analysis of these mechanisms, discuss their specific functions and the role of the superposition of these mechanisms in the maintenance of cell structural robustness in a wide range of environmental conditions.
Collapse
Affiliation(s)
- Vasily V Grinev
- Biology Faculty, Department of Genetics, Belarusian State University, 220030, Minsk, Belarus.
| | | | | |
Collapse
|
9
|
Shamanna RA, Hoque M, Pe'ery T, Mathews MB. Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 2012. [PMID: 23208500 PMCID: PMC4032571 DOI: 10.1038/onc.2012.533] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The heterodimeric nuclear factor 90/nuclear factor 45 complex (NF90/NF45) binds nucleic acids and is a multifunctional regulator of gene expression. Here we report that depletion of NF90/NF45 restores the expression of the p53 and p21 proteins in cervical carcinoma cells infected with high-risk human papillomaviruses (HPV). Knockdown of either NF90 or NF45 by RNA interference led to greatly elevated levels of p53 and p21 proteins in HPV-derived HeLa and SiHa cells, but not in other cancerous or normal cell lines. In HeLa cells, p21 mRNA increased concomitantly but the level of p53 mRNA was unaffected. RNA interference directed against p53 prevented the induction of both proteins. These results indicated that the up-regulation of p21 is due to p53-dependent transcription, whereas p53 is regulated post-transcriptionally. Proteasome-mediated turnover of p53 is accelerated by the HPV E6 and cellular E6AP proteins. We therefore examined the hypothesis that this pathway is regulated by NF90/NF45. Indeed, depletion of NF90 attenuated the expression of E6 RNA and inhibited transcription from the HPV early promoter, revealing a new role for NF90/NF45 in HPV gene expression. The transcription inhibition was largely independent of the reduction of P-TEFb levels caused by NF90 depletion. Consistent with p53 derepression, NF90/NF45-depleted HeLa cells displayed elevated PARP cleavage and susceptibility to camptothecin-induced apoptosis. We conclude that high-risk strains of HPV utilize the cellular NF90/NF45 complex for viral E6 expression in infected cervical carcinoma cell lines. Interference with NF90/NF45 function could assist in controlling cervical carcinoma.
Collapse
Affiliation(s)
- R A Shamanna
- 1] Department of Biochemistry and Molecular Biology, New Jersey Medical School, UMDNJ, Newark, NJ, USA [2] Graduate School of Biomedical Sciences, UMDNJ, Newark, NJ, USA
| | | | | | | |
Collapse
|