1
|
Sugimoto Y, Masuda Y, Iwai S, Miyake Y, Kanao R, Masutani C. Novel mechanisms for the removal of strong replication-blocking HMCES- and thiazolidine-DNA adducts in humans. Nucleic Acids Res 2023; 51:4959-4981. [PMID: 37021581 PMCID: PMC10250235 DOI: 10.1093/nar/gkad246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are DNA lesions created under normal growth conditions that result in cytotoxicity, replication-blocks, and mutations. AP sites are susceptible to β-elimination and are liable to be converted to DNA strand breaks. HMCES (5-hydroxymethylcytosine binding, ES cell specific) protein interacts with AP sites in single stranded (ss) DNA exposed at DNA replication forks to generate a stable thiazolidine protein-DNA crosslink and protect cells against AP site toxicity. The crosslinked HMCES is resolved by proteasome-mediated degradation; however, it is unclear how HMCES-crosslinked ssDNA and the resulting proteasome-degraded HMCES adducts are processed and repaired. Here, we describe methods for the preparation of thiazolidine adduct-containing oligonucleotides and determination of their structure. We demonstrate that the HMCES-crosslink is a strong replication blocking adduct and that protease-digested HMCES adducts block DNA replication to a similar extent as AP sites. Moreover, we show that the human AP endonuclease APE1 incises DNA 5' to the protease-digested HMCES adduct. Interestingly, while HMCES-ssDNA crosslinks are stable, the crosslink is reversed upon the formation of dsDNA, possibly due to a catalytic reverse reaction. Our results shed new light on damage tolerance and repair pathways for HMCES-DNA crosslinks in human cells.
Collapse
Affiliation(s)
- Yohei Sugimoto
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Molecular Pharmaco-Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
2
|
Bulygin AA, Fedorova OS, Kuznetsov NA. Insights into Mechanisms of Damage Recognition and Catalysis by APE1-like Enzymes. Int J Mol Sci 2022; 23:ijms23084361. [PMID: 35457179 PMCID: PMC9026830 DOI: 10.3390/ijms23084361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases are the key DNA repair enzymes in the base excision repair (BER) pathway, and are responsible for hydrolyzing phosphodiester bonds on the 5′ side of an AP site. The enzymes can recognize not only AP sites but also some types of damaged bases, such as 1,N6-ethenoadenosine, α-adenosine, and 5,6-dihydrouridine. Here, to elucidate the mechanism underlying such a broad substrate specificity as that of AP endonucleases, we performed a computational study of four homologous APE1-like endonucleases: insect (Drosophila melanogaster) Rrp1, amphibian (Xenopus laevis) APE1 (xAPE1), fish (Danio rerio) APE1 (zAPE1), and human APE1 (hAPE1). The contact between the amino acid residues of the active site of each homologous APE1-like enzyme and the set of damaged DNA substrates was analyzed. A comparison of molecular dynamic simulation data with the known catalytic efficiency of these enzymes allowed us to gain a deep insight into the differences in the efficiency of the cleavage of various damaged nucleotides. The obtained data support that the amino acid residues within the “damage recognition” loop containing residues Asn222–Ala230 significantly affect the catalytic-complex formation. Moreover, every damaged nucleotide has its unique position and a specific set of interactions with the amino acid residues of the active site.
Collapse
Affiliation(s)
- Anatoly A. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia;
- Correspondence: (O.S.F.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| |
Collapse
|
3
|
Davletgildeeva AT, Ishchenko AA, Saparbaev M, Fedorova OS, Kuznetsov NA. The Enigma of Substrate Recognition and Catalytic Efficiency of APE1-Like Enzymes. Front Cell Dev Biol 2021; 9:617161. [PMID: 33842455 PMCID: PMC8033172 DOI: 10.3389/fcell.2021.617161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Despite significant achievements in the elucidation of the nature of protein-DNA contacts that control the specificity of nucleotide incision repair (NIR) by apurinic/apyrimidinic (AP) endonucleases, the question on how a given nucleotide is accommodated by the active site of the enzyme remains unanswered. Therefore, the main purpose of our study was to compare kinetics of conformational changes of three homologous APE1-like endonucleases (insect Drosophila melanogaster Rrp1, amphibian Xenopus laevis xAPE1, and fish Danio rerio zAPE1) during their interaction with various damaged DNA substrates, i.e., DNA containing an F-site (an uncleavable by DNA-glycosylases analog of an AP-site), 1,N6-ethenoadenosine (εA), 5,6-dihydrouridine (DHU), uridine (U), or the α-anomer of adenosine (αA). Pre-steady-state analysis of fluorescence time courses obtained for the interaction of the APE1-like enzymes with DNA substrates containing various lesions allowed us to outline a model of substrate recognition by this class of enzymes. It was found that the differences in rates of DNA substrates’ binding do not lead to significant differences in the cleavage efficiency of DNA containing a damaged base. The results suggest that the formation of enzyme–substrate complexes is not the key factor that limits enzyme turnover; the mechanisms of damage recognition and cleavage efficacy are related to fine conformational tuning inside the active site.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexander A Ishchenko
- Group "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Murat Saparbaev
- Group "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Bulygin AA, Kuznetsova AA, Vorobjev YN, Fedorova OS, A. Kuznetsov N. The Role of Active-Site Plasticity in Damaged-Nucleotide Recognition by Human Apurinic/Apyrimidinic Endonuclease APE1. Molecules 2020; 25:molecules25173940. [PMID: 32872297 PMCID: PMC7504742 DOI: 10.3390/molecules25173940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 hydrolyzes phosphodiester bonds on the 5′ side of an AP-site, and some damaged nucleotides such as 1,N6-ethenoadenosine (εA), α-adenosine (αA), and 5,6-dihydrouridine (DHU). To investigate the mechanism behind the broad substrate specificity of APE1, we analyzed pre-steady-state kinetics of conformational changes in DNA and the enzyme during DNA binding and damage recognition. Molecular dynamics simulations of APE1 complexes with one of damaged DNA duplexes containing εA, αA, DHU, or an F-site (a stable analog of an AP-site) revealed the involvement of residues Asn229, Thr233, and Glu236 in the mechanism of DNA lesion recognition. The results suggested that processing of an AP-site proceeds faster in comparison with nucleotide incision repair substrates because eversion of a small abasic site and its insertion into the active site do not include any unfavorable interactions, whereas the insertion of any target nucleotide containing a damaged base into the APE1 active site is sterically hindered. Destabilization of the α-helix containing Thr233 and Glu236 via a loss of the interaction between these residues increased the plasticity of the damaged-nucleotide binding pocket and the ability to accommodate structurally different damaged nucleotides. Nonetheless, the optimal location of εA or αA in the binding pocket does not correspond to the optimal conformation of catalytic amino acid residues, thereby significantly decreasing the cleavage efficacy for these substrates.
Collapse
Affiliation(s)
- Anatoly A. Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - Alexandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
| | - Yuri N. Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentyev Ave. 8, 630090 Novosibirsk, Russia; (A.A.B.); (A.A.K.); (Y.N.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| |
Collapse
|
5
|
Kuznetsova AA, Matveeva AG, Milov AD, Vorobjev YN, Dzuba SA, Fedorova OS, Kuznetsov NA. Substrate specificity of human apurinic/apyrimidinic endonuclease APE1 in the nucleotide incision repair pathway. Nucleic Acids Res 2019; 46:11454-11465. [PMID: 30329131 PMCID: PMC6265485 DOI: 10.1093/nar/gky912] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 catalyses the hydrolysis of phosphodiester bonds on the 5′ side of an AP-site (in the base excision repair pathway) and of some damaged nucleotides (in the nucleotide incision repair pathway). The range of substrate specificity includes structurally unrelated damaged nucleotides. Here, to examine the mechanism of broad substrate specificity of APE1, we performed pulsed electron–electron double resonance (PELDOR) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer (FRET) detection of DNA conformational changes during DNA binding and lesion recognition. Equilibrium PELDOR and kinetic FRET data revealed that DNA binding by APE1 leads to noticeable damage-dependent bending of a DNA duplex. Molecular dynamics simulations showed that the damaged nucleotide is everted from the DNA helix and placed into the enzyme’s binding pocket, which is formed by Asn-174, Asn-212, Asn-229, Ala-230, Phe-266 and Trp-280. Nevertheless, no damage-specific contacts were detected between these amino acid residues in the active site of the enzyme and model damaged substrates containing 1,N6-ethenoadenosine, α-adenosine, 5,6-dihydrouridine or F-site. These data suggest that the substrate specificity of APE1 is controlled by the ability of a damaged nucleotide to flip out from the DNA duplex in response to an enzyme-induced DNA distortion.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G Matveeva
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander D Milov
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yuri N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Timofeyeva NA, Fedorova OS. A kinetic mechanism of repair of DNA containing α-anomeric deoxyadenosine by human apurinic/apyrimidinic endonuclease 1. MOLECULAR BIOSYSTEMS 2017; 12:3435-3446. [PMID: 27722620 DOI: 10.1039/c6mb00511j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Anomers of 2'-deoxyadenosine (αdA) are major products of deoxyadenosine damage when DNA is γ-irradiated under anoxic conditions. Such lesions are a threat to genomic stability and are known to be processed by human apurinic/apyrimidinic endonuclease 1 (APE1). The aim of this study was to determine whether the α-anomeric structure enhances enzyme recognition. For this purpose, we analyzed the kinetic mechanism of αdA conversion by APE1 using a stopped-flow fluorescence technique. Our data reveals that the initial formation of the complex of APE1 with an αdA-containing substrate is followed by at least three conformational transitions in this complex that correspond to the induced fit leading to the formation of a catalytically competent complex. A local perturbation around the αdA lesion in the DNA duplex allows APE1 to avoid the initial conformational changes observed earlier in the case of the enzyme binding to an undamaged ligand, abasic-site-, tetrahydrofuran-, or 5,6-dihydrouridine-containing substrates. The αdA structure promotes recognition by the enzyme but dramatically impedes formation of the catalytically competent complex and hydrolysis of the 5'-phosphodiester bond. A step following the chemical reaction, possibly a release of the αdA-containing product, is rate-limiting for the overall enzymatic process, though an α-anomeric nucleotide at the 5' terminus of the DNA nick accelerates dissociation of the enzyme-product complex. Our results show that the efficiency of αdA lesion conversion by APE1 is very low. Nonetheless, αdA repair by APE1 is probably a biologically relevant process.
Collapse
Affiliation(s)
- N A Timofeyeva
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | - O S Fedorova
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| |
Collapse
|
7
|
Dyakonova ES, Koval VV, Ishchenko AA, Saparbaev MK, Kaptein R, Fedorova OS. Kinetic mechanism of the interaction of Saccharomyces cerevisiae AP-endonuclease 1 with DNA substrates. BIOCHEMISTRY (MOSCOW) 2012; 77:1162-71. [DOI: 10.1134/s0006297912100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Timofeyeva NA, Koval VV, Ishchenko AA, Saparbaev MK, Fedorova OS. Lys98 substitution in human AP endonuclease 1 affects the kinetic mechanism of enzyme action in base excision and nucleotide incision repair pathways. PLoS One 2011; 6:e24063. [PMID: 21912662 PMCID: PMC3164677 DOI: 10.1371/journal.pone.0024063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key enzyme in the base excision repair (BER) and nucleotide incision repair (NIR) pathways. We recently analyzed the conformational dynamics and kinetic mechanism of wild-type (wt) protein, in a stopped-flow fluorescence study. In this study, we investigated the mutant enzyme APE1K98A using the same approach. Lys98 was known to hydrogen bond to the carboxyl group of Asp70, a residue implicated in binding the divalent metal ion. Our data suggested that the conformational selection and induced fit occur during the enzyme action. We expanded upon the evidence that APE1 can pre-exist in two conformations. The isomerization of an enzyme-product complex in the BER process and the additional isomerization stage of enzyme-substrate complex in the NIR process were established for APE1K98A. These stages had not been registered for the wtAPE1. We found that the K98A substitution resulted in a 12-fold reduction of catalytic constant of 5'-phosphodiester bond hydrolysis in (3-hydroxytetrahydrofuran-2-yl)methyl phosphate (F, tetrahydrofuran) containing substrate, and in 200-fold reduction in 5,6-dihydrouridine (DHU) containing substrate. Thus, the K98A substitution influenced NIR more than BER. We demonstrated that the K98A mutation influenced the formation of primary unspecific enzyme-substrate complex in a complicated manner, depending on the Mg(2+) concentration and pH. This mutation obstructed the induced fit of enzyme in the complex with undamaged DNA and F-containing DNA and appreciably decreased the stability of primary complex upon interaction of enzyme with DNA, containing the natural apurinic/apyrimidinic (AP) site. Furthermore, it significantly delayed the activation of the less active form of enzyme during NIR and slowed down the conformational conversion of the complex of enzyme with the cleavage product of DHU-substrate. Our data revealed that APE1 uses the same active site to catalyze the cleavage of DHU- and AP-substrates.
Collapse
Affiliation(s)
- Nadezhda A. Timofeyeva
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Vladimir V. Koval
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Alexander A. Ishchenko
- CNRS UMR8200 Université Paris-Sud XI, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Murat K. Saparbaev
- CNRS UMR8200 Université Paris-Sud XI, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Olga S. Fedorova
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|