1
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
2
|
Tornesello ML, Tornesello AL, Starita N, Cerasuolo A, Izzo F, Buonaguro L, Buonaguro FM. Telomerase: a good target in hepatocellular carcinoma? An overview of relevant preclinical data. Expert Opin Ther Targets 2022; 26:767-780. [PMID: 36369706 DOI: 10.1080/14728222.2022.2147062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| | - Luigi Buonaguro
- Laboratory of Cancer Immunoregulation, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy
| |
Collapse
|
3
|
Comprehensive analysis of telomerase inhibition by gallotannin. Oncotarget 2018; 9:18712-18719. [PMID: 29721155 PMCID: PMC5922349 DOI: 10.18632/oncotarget.24642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Gallotannin (or tannic acid) is a naturally occurring compound that inhibits cell growth and activity of different DNA-polymerases, including telomerase. The purpose of the present study was to gain insight into the mechanism of telomerase inhibition by gallotannin. We determined that gallotannin inhibits telomerase in vitro with an half maximal inhibitory concentrations value of 130 nM, but it does not affect telomerase complex assembly and component levels in vivo. The inhibitory activity of gallotannin against telomerase provides an additional explanation for the anti-cancer activities of this compound.
Collapse
|
4
|
Wang H, Zhou J, He Q, Dong Y, Liu Y. Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer. Mol Med Rep 2017; 15:4055-4060. [PMID: 28487971 PMCID: PMC5436214 DOI: 10.3892/mmr.2017.6549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Esophageal cancer is one of the most common type of malignancies. Telomerase activity, which is absent or weakly detected in the majority of human somatic cells, is elevated in esophageal cancer. Although azidothymidine (AZT), a reverse transcriptase inhibitor, has been utilized as a treatment for tumors, its role in treating esophageal cancer has not been confirmed. The aim of the present study was to determine the effect of AZT on telomerase activity and the proliferation of the human esophageal cancer cell line TE-11. A telomeric repeat amplification assay was utilized to detect telomerase activity following treatment of TE-11 cells with AZT. The effect of AZT on TE-11 cell cycle distribution was determined by flow cytometry. Cellular DNA damage was evaluated by a comet assay and an MTT assay demonstrated that AZT significantly inhibited the viability of TE-11 cells, in a time-and dose-dependent manner. In addition, TE-11 cells treated with various concentrations of AZT exhibited a significant reduction in telomerase activity and percentage of cells in the G1/G0 phase, and an increase in the percentage of cells in the S phase. High doses of AZT caused DNA damage, and enhanced the expression levels of γ-H2A histone family member X and phosphorylated checkpoint kinase 2 in TE-11 cells. These results demonstrated that AZT effectively inhibits proliferation of the TE-11 human esophageal cancer cell line in vitro. The growth inhibitory effects were associated with a reduction in telomerase activity, S and G2/M phase cell cycle arrest, and enhanced DNA damage, suggesting that AZT may be utilized in the clinic for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510080, P.R. China
| | - Jianwen Zhou
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qiong He
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Dong
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanhui Liu
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
5
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|
6
|
Abstract
INTRODUCTION Telomerase is a ribonucleoprotein that catalyses the addition of telomeric repeat sequences (having the sequence 5'-TTAGGG-3' in humans) to the ends of chromosomes. Telomerase activity is detected in most types of human tumours, but it is almost undetectable in normal somatic cells. Therefore, telomerase is a promising therapeutic target. To date, the known inhibitors of telomerase include nucleoside analogues, oligonucleotides and G-quadruplex stabilizers. This review highlights recent advances in our understanding of telomerase inhibitors, the relationships between telomerase inhibitors, cancer, and fields such as inflammation. AREAS COVERED This review summarizes new patents published on telomerase inhibitors from 2010 to 2015. EXPERT OPINION The review provides a brief account of the background, development, and on-going issues involving telomerase inhibitors. In particular, this review emphasizes imetelstat (GRN163L) and some typical G-quadruplex stabilizers that participate in telomerase inhibition. Overall, the research scope of antineoplastic is becoming broader and telomerase inhibitors have been shown to be a promising therapeutic target. Therefore, novel antineoplastic agents with greater activity and higher specificity must be developed.
Collapse
Affiliation(s)
- Ruo-Jun Man
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China.,b Preparatory College Education , Guangxi University for Nationalities , Nanning , People's Republic of China
| | - Long-Wang Chen
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China
| | - Hai-Liang Zhu
- a State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing , People's Republic of China
| |
Collapse
|
7
|
Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity. Mol Cell Biol 2015; 36:251-61. [PMID: 26503788 DOI: 10.1128/mcb.00794-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/22/2015] [Indexed: 01/04/2023] Open
Abstract
Telomerase is a specialized ribonucleoprotein complex that extends the 3' ends of chromosomes to counteract telomere shortening. However, increased telomerase activity is associated with ∼90% of human cancers. The telomerase enzyme minimally requires an RNA (hTR) and a specialized reverse transcriptase protein (TERT) for activity in vitro. Understanding the structure-function relationships within hTR has important implications for human disease. For the first time, we have tested the physical-connectivity requirements in the 451-nucleotide hTR RNA using circular permutations, which reposition the 5' and 3' ends. Our extensive in vitro analysis identified three classes of hTR circular permutants with altered function. First, circularly permuting 3' of the template causes specific defects in repeat-addition processivity, revealing that the template recognition element found in ciliates is conserved in human telomerase RNA. Second, seven circular permutations residing within the catalytically important core and CR4/5 domains completely abolish telomerase activity, unveiling mechanistically critical portions of these domains. Third, several circular permutations between the core and CR4/5 significantly increase telomerase activity. Our extensive circular permutation results provide insights into the architecture and coordination of human telomerase RNA and highlight where the RNA could be targeted for the development of antiaging and anticancer therapeutics.
Collapse
|
8
|
Pojskic L, Haveric S, Lojo-Kadric N, Hadzic M, Haveric A, Galic Z, Galic B, Vullo D, Supuran CT, Milos M. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line. J Enzyme Inhib Med Chem 2015; 31:999-1004. [DOI: 10.3109/14756366.2015.1078329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina,
| | - Sanin Haveric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina,
| | - Naida Lojo-Kadric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina,
| | - Maida Hadzic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina,
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina,
| | - Zoran Galic
- David Geffen School of Medicine at UCLA, University of Los Angeles, Los Angeles, CA, USA,
| | - Borivoj Galic
- Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina,
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, degli Studi di Firenze, Firenze, Italy,
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Università degli Studi di Firenze, Firenze, Italy, and
| | - Mladen Milos
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| |
Collapse
|