1
|
Yadava S, Reddy DH, Nakka VP, Anusha VL, Dumala N, Viswanadh MK, Chakravarthi G, Nalluri BN, Ramakrishna K. Unravelling neuroregenerative and neuroprotective roles of Wnt/β-catenin pathway in ischemic stroke: Insights into molecular mechanisms. Neuroscience 2025; 565:527-547. [PMID: 39681254 DOI: 10.1016/j.neuroscience.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Stroke is a serious condition often resulting in mortality or long-term disability, causing cognitive, memory, and motor impairments. A reduction in cerebral blood flow below critical levels defines the ischemic core and penumbra: the core undergoes irreversible damage, while the penumbra remains viable but functionally impaired. This functional impairment activates complex cell signaling pathways that determine cell survival or death, making the penumbra a key target for therapeutic interventions to prevent further damage. The Wnt/β-catenin (WβC) signaling pathway has emerged as a potential neuroprotective mechanism, promoting neurogenesis, angiogenesis, neuronal connectivity, and maintaining blood-brain barrier integrity after stroke. Activation of the WβC pathway also mitigates oxidative stress, inflammation, and apoptosis in ischemic regions, enhancing its neuroprotective effects. However, the overexpression of GSK3β and DKK1, or the presence of their agonists, can counteract these benefits. This review explores the therapeutic potential of WβC signaling, highlighting the effects of pharmacological modulation through antagonists, agonists, synthetic chemicals, natural products, stem cells, and macromolecules in preclinical models of ischemic stroke. While preclinical evidence supports the benefits of WβC activation, its role in human stroke requires further investigation. Additionally, the review discusses the potential adverse effects of prolonged WβC activation and suggests strategies to mitigate them. Overall, WβC signaling holds promise as a therapeutic target, offering insights into stroke pathophysiology and informing the development of novel treatment strategies.
Collapse
Affiliation(s)
- Srikanth Yadava
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| | | | - Venkata Prasuja Nakka
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, 500046, India.
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| |
Collapse
|
2
|
Kurolap A, Chai Gadot C, Eshach Adiv O, Hershkovitz T, Avitan-Hersh E, Martin L, Humeau H, Schatz UA, Westphal DS, Lobmaier S, Sofrin-Drucker E, Stafler P, Bugis J, Chermesh I, Hardak E, Geva P, Zohar Y, Hershkovitz D, Mory A, Chatterji S, Greenberger S, Shteinberg M, Baris Feldman H. Impaired Wnt/Planar Cell Polarity Signaling in Yellow Nail Syndrome. Ann Intern Med 2025; 178:39-49. [PMID: 39715557 DOI: 10.7326/annals-24-01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Yellow nail syndrome (YNS) is a rare disorder characterized by a triad of yellow dystrophic nails, lymphedema, and chronic lung disease. Most patients present in adulthood, with only a few congenital or familial cases described. The cause of YNS remains largely unknown, although defects in lymphatic vessel development are suggested to play a significant role. OBJECTIVE To elucidate the genetic mechanisms underlying YNS. DESIGN Analysis of genetic sequencing data and gene and protein expression studies. SETTING A tertiary care academic medical center. PATIENTS 6 patients with congenital YNS (cYNS) and 5 with sporadic YNS (sYNS). MEASUREMENTS Exome and genome sequencing were used to detect disease-causing variants, complemented by RNA analyses for intronic variants. Protein and gene expressions were studied by immunofluorescence staining and real-time reverse transcriptase quantitative polymerase chain reaction analyses. RESULTS Biallelic variants in CELSR1 (n = 5) or likely FZD6 (n = 1), both core molecules in the Wnt/planar cell polarity (PCP) pathway, were identified in all patients with cYNS; none of the patients with sYNS had candidate genetic variants. Immunofluorescence staining showed that CELSR1 colocalizes with lymphatic vessels in the skin but not in the lungs or the intestine. Moreover, levels of CELSR1 and FZD6 proteins were negligible to zero in patient tissues (n = 2) compared with control tissues. Gene expression of Wnt/PCP-related genes was reduced in patients with cYNS (n = 3), and patients with sYNS (n = 4) showed milder gene expression impairments. LIMITATION Small cohort size and limited sample availability. CONCLUSION Defects in PCP organization may play a major role in the pathogenesis of YNS. To the authors' knowledge, this is the first demonstration of a mechanism explaining YNS development, mainly in its congenital form but also in patients with sporadic disease. PRIMARY FUNDING SOURCE The Prof. Baum Research Fund of Israel Lung Association.
Collapse
Affiliation(s)
- Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (A.K., C.C.G., J.B., A.M.)
| | - Chofit Chai Gadot
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (A.K., C.C.G., J.B., A.M.)
| | - Orly Eshach Adiv
- Pediatric Gastroenterology Unit, Hillel Yaffe Medical Center, Hadera, Israel (O.E.A.)
| | - Tova Hershkovitz
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel (T.H.)
| | - Emily Avitan-Hersh
- Department of Dermatology, Rambam Health Care Campus, and Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel (E.A.)
| | - Ludovic Martin
- Department of Dermatology, University Hospital Angers, Angers, France (L.M., H.H.)
| | - Helene Humeau
- Department of Dermatology, University Hospital Angers, Angers, France (L.M., H.H.)
| | - Ulrich A Schatz
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany (U.A.S.)
| | - Dominik S Westphal
- Institute of Human Genetics and Department of Internal Medicine I, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany (D.S.W.)
| | - Silvia Lobmaier
- Division of Obstetrics and Perinatal Medicine, Department of Obstetrics and Gynecology, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany (S.L.)
| | - Efrat Sofrin-Drucker
- Pediatric Genetic Clinic, Schneider Children's Medical Center of Israel, Petah Tikva, Israel (E.S.D.)
| | - Patrick Stafler
- Pulmonary Institute, Schneider Children's Medical Center of Israel, Petach Tikva, and School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel (P.S.)
| | - Joshua Bugis
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (A.K., C.C.G., J.B., A.M.)
| | - Irit Chermesh
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, and Institute of Gastroenterology, Rambam Health Care Campus, Haifa, Israel (I.C.)
| | - Emilia Hardak
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, and Division of Pulmonary Medicine, Bnai-Zion Medical Center, Haifa, Israel (E.H.)
| | - Polina Geva
- Department of Dermatology, Sheba Medical Center, Ramat Gan, Israel (P.G.)
| | - Yaniv Zohar
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, and Department of Pathology, Rambam Health Care Campus, Haifa, Israel (Y.Z.)
| | - Dov Hershkovitz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, and Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (D.H.)
| | - Adi Mory
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (A.K., C.C.G., J.B., A.M.)
| | - Sumit Chatterji
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, and Institute of Pulmonary Medicine, Sheba Medical Center, Ramat Gan, Israel (S.C.)
| | - Shoshana Greenberger
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, and Department of Dermatology, Sheba Medical Center, Ramat Gan, Israel (S.G.)
| | - Michal Shteinberg
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, and Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel (M.S.)
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, and School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel (H.B.F.)
| |
Collapse
|
3
|
Zuo J, Zheng A, Wang X, Luo Z, Chen Y, Cheng X, Zhao Y, Zhou X, Tang KF, Du X. Upregulation of CELSR1 expression promotes ovarian cancer cell proliferation, migration, and invasion. Med Oncol 2023; 41:10. [PMID: 38070011 DOI: 10.1007/s12032-023-02232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Cadherin epidermal growth factor and laminin-G seven-pass G-type receptor 1 (CELSR1) is a planar cell polarity protein involved in the transmission of directional cues to align either individual cells within an epithelial sheet or multicellular clusters. CELSR1 has been suggested to play a role in glioma, breast cancer, and chronic lymphocytic leukemia development; however, whether it has a role in the pathogenesis of ovarian cancer remains unknown. The aim of this study was to determine the role of CELSR1 in ovarian cancer and elucidate its underlying molecular mechanisms. By analyzing gene expression data downloaded from the Cancer Genome Atlas database, we found that CELSR1 expression was upregulated in ovarian cancer tissues compared to that in normal ovarian tissues. High CELSR1 expression levels were associated with poor prognosis in patients with ovarian cancer. Cell proliferation, scratch, and transwell assays revealed that CELSR1 promoted the proliferation, migration, and invasion of ovarian cancer cells in vitro. In addition, transcriptome sequencing analysis revealed that CELSR1 knockdown in T29H cells resulted in the dysregulation of the expression of 1320 genes. Further analysis revealed that genes involved in proliferation- and migration-associated signaling pathways were regulated by CELSR1. Our study demonstrates that CELSR1 is highly expressed in ovarian cancer cells and regulates their proliferation and migration, suggesting its potential as a diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Jiwei Zuo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xingyue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Zhicheng Luo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xiaoxiao Cheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Yuemei Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xian Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital, 181, Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Kai-Fu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
- Key Laboratory of Molecular Biology On Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xing Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
4
|
Li Q, Lesseur C, Srirangam P, Kaur K, Hermetz K, Caudle WM, Fiedler N, Panuwet P, Prapamontol T, Naksen W, Suttiwan P, Baumert BO, Hao K, Barr DB, Marsit CJ, Chen J. Associations between prenatal organophosphate pesticide exposure and placental gene networks. ENVIRONMENTAL RESEARCH 2023; 224:115490. [PMID: 36828252 PMCID: PMC10054353 DOI: 10.1016/j.envres.2023.115490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to organophosphate (OP) pesticides during pregnancy has been linked to deficiencies of neurobehavioral development in childhood; however, the molecular mechanisms underlying this association remain elusive. The placenta plays a crucial role in protecting the fetus from environmental insults and safeguarding proper fetal development including neurodevelopment. The aim of our study is to evaluate changes in the placental transcriptome associated with prenatal OP exposure. METHODS Pregnant farm workers from two agricultural districts in northern Thailand were recruited for the Study of Asian Women and Offspring's Development and Environmental Exposures (SAWASDEE) from 2017 to 2019. For 254 participants, we measured maternal urinary concentrations of six nonspecific dialkyl phosphates (DAP) metabolites in early, middle, and late pregnancy. In parallel, we profiled the term placental transcriptome from the same participants using RNA-Sequencing and performed Weighted Gene co-expression Network Analysis (WGCNA). Generalized linear regression modeling was used to examine associations of urinary OP metabolites and placental co-expression module eigenvalues. RESULTS We identified 21 gene co-expression modules in the placenta. From the six DAP metabolites assayed, diethylphosphate (DEP) and diethylthiophosphate (DETP) were detected in more than 70% of the urine samples. Significant associations between DEP at multiple time points and two specific placental gene modules were observed. The 'black' module, enriched in genes involved in epithelial-to-mesenchymal transition (EMT) and hypoxia, was negatively associated with DEP in early (p = 0.034), and late pregnancies (p = 0.016). The 'lightgreen' module, enriched in genes involved in myogenesis and EMT, was negatively associated with DEP in late pregnancy (p = 0.010). We observed 2 hub genes (CELSR1 and PYCR1) of the 'black' module to be negatively associated with DEP in early and late pregnancies. CONCLUSIONS Our results suggest that prenatal OP exposure may disrupt placental gene networks in a time-dependent manner. Such transcriptomic effects may lead to down-stream changes in placental function that ultimately affect the developing fetus.
Collapse
Affiliation(s)
- Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pranathi Srirangam
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Barnard College, New York, NY, USA
| | - Kirtan Kaur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - W Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Fiedler
- Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Psychology Center of Life-span Development and Intergeneration (LIFE Di), Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Brittney O Baumert
- Department of Population and Public Health Science, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, USA
| | - Ke Hao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Tavallaee G, Lively S, Rockel JS, Ali SA, Im M, Sarda C, Mitchell GM, Rossomacha E, Nakamura S, Potla P, Gabrial S, Matelski J, Ratneswaran A, Perry K, Hinz B, Gandhi R, Jurisica I, Kapoor M. Contribution of MicroRNA-27b-3p to Synovial Fibrotic Responses in Knee Osteoarthritis. Arthritis Rheumatol 2022; 74:1928-1942. [PMID: 35791923 PMCID: PMC10946865 DOI: 10.1002/art.42285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Synovial fibrosis contributes to osteoarthritis (OA) pathology, but the underlying mechanisms remain unknown. We have observed increased microRNA-27b-3p (miR-27b-3p) levels in synovial fluid of patients with late-stage radiographic knee OA. Here, we investigated the contribution of miR-27b-3p to synovial fibrosis in patients with severe knee OA and in a mouse model of knee OA. METHODS We stained synovium sections obtained from patients with radiographic knee OA scored according to the Kellgren/Lawrence scale and mice that underwent destabilization of the medial meniscus (DMM) for miR-27b-3p using in situ hybridization. We examined the effects of intraarticular injection of miR-27b-3p mimic into naive mouse knee joints and intraarticular injection of a miR-27b-3p inhibitor into mouse knee joints after DMM. We performed transfection with miR-27b-3p mimic and miR-27b-3p inhibitor in human OA fibroblast-like synoviocytes (FLS) using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) array, RNA sequencing, RT-qPCR, Western blotting, immunofluorescence, and migration assays. RESULTS We observed increased miR-27b-3p expression in the synovium from patients with knee OA and in mice with DMM-induced arthritis. Injection of the miR-27b-3p mimic in mouse knee joints induced a synovial fibrosis-like phenotype, increased synovitis scores, and increased COL1A1 and α-smooth muscle actin (α-SMA) expression. In the mouse model of DMM-induced arthritis, injection of the miR-27b-3p inhibitor decreased α-SMA but did not change COL1A1 expression levels or synovitis scores. Transfection with the miR-27b-3p mimic in human OA FLS induced profibrotic responses, including increased migration and expression of key extracellular matrix (ECM) genes, but transfection with the miR-27b-3p inhibitor had the opposite effects. RNA sequencing identified a PPARG/ADAMTS8 signaling axis regulated by miR-27b-3p in OA FLS. Human OA FLS transfected with miR-27b-3p mimic and then treated with the PPARG agonist rosiglitazone or with ADAMTS8 small interfering RNA exhibited altered expression of select ECM genes. CONCLUSION Our findings demonstrate that miR-27b-3p has a key role in ECM regulation associated with synovial fibrosis during OA.
Collapse
Affiliation(s)
- Ghazaleh Tavallaee
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Krembil Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoOntarioCanada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Jason S. Rockel
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Shabana Amanda Ali
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada, and Bone & Joint Center, Department of Orthopaedic Surgery, Henry Ford Health SystemDetroitMichigan
| | - Michelle Im
- Faculty of Dentistry, University of TorontoTorontoOntarioCanada
| | - Clementine Sarda
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Greniqueca M. Mitchell
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Evgeny Rossomacha
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Sayaka Nakamura
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Pratibha Potla
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Sarah Gabrial
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - John Matelski
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Anusha Ratneswaran
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Kim Perry
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, and Krembil Research Institute, University Health NetworkTorontoOntarioCanada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, and Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's HospitalTorontoOntarioCanada
| | - Rajiv Gandhi
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Krembil Research Institute, University Health Network, and Departments of Medical Biophysics and Computer Science, University of TorontoTorontoOntarioCanada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Krembil Research Institute, University Health Network, Toronto, Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada, and Institute of Neuroimmunology, Slovak Academy of SciencesBratislavaSlovakia
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Krembil Research Institute, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, and Division of Orthopaedic Surgery, Department of Surgery, University of TorontoTorontoOntarioCanada
| |
Collapse
|
6
|
Gruenhagen GW, Mubeen T, Patil C, Stockert J, Streelman JT. Single Cell RNA Sequencing Reveals Deep Homology of Dental Cell Types Across Vertebrates. FRONTIERS IN DENTAL MEDICINE 2022; 3. [DOI: 10.3389/fdmed.2022.845449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Like most mammals, humans replace their teeth once throughout their lives and have limited regenerative capabilities. In contrast, mice continually renew tissues lost due to gnawing through a well characterized population of stem cells on the labial surface of the incisor. Most non-mammalian vertebrates replace teeth throughout life; the cellular and molecular mechanisms of successional tooth replacement are largely unknown. Here we use single nuclei RNA sequencing (snRNA-seq) of replacement teeth and adjacent oral lamina in Lake Malawi cichlids, species with lifelong whole–tooth replacement, to make two main discoveries. First, despite hundreds of millions of years of evolution, we demonstrate conservation of cell type gene expression across vertebrate teeth (fish, mouse, human). Second, we used an approach that combines marker gene expression and developmental potential of dental cells to uncover the transcriptional signature of stem-like cells in regenerating teeth. Our work underscores the importance of a comparative framework in the study of vertebrate oral and regenerative biology.
Collapse
|
7
|
Simon F, Tissir F, Michel V, Lahlou G, Deans M, Beraneck M. Implication of Vestibular Hair Cell Loss of Planar Polarity for the Canal and Otolith-Dependent Vestibulo-Ocular Reflexes in Celsr1-/- Mice. Front Neurosci 2021; 15:750596. [PMID: 34790090 PMCID: PMC8591238 DOI: 10.3389/fnins.2021.750596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: Vestibular sensory hair cells are precisely orientated according to planar cell polarity (PCP) and are key to enable mechanic-electrical transduction and normal vestibular function. PCP is found on different scales in the vestibular organs, ranging from correct hair bundle orientation, coordination of hair cell orientation with neighboring hair cells, and orientation around the striola in otolithic organs. Celsr1 is a PCP protein and a Celsr1 KO mouse model showed hair cell disorganization in all vestibular organs, especially in the canalar ampullae. The objective of this work was to assess to what extent the different vestibulo-ocular reflexes were impaired in Celsr1 KO mice. Methods: Vestibular function was analyzed using non-invasive video-oculography. Semicircular canal function was assessed during sinusoidal rotation and during angular velocity steps. Otolithic function (mainly utricular) was assessed during off-vertical axis rotation (OVAR) and during static and dynamic head tilts. Results: The vestibulo-ocular reflex of 10 Celsr1 KO and 10 control littermates was analyzed. All KO mice presented with spontaneous nystagmus or gaze instability in dark. Canalar function was reduced almost by half in KO mice. Compared to control mice, KO mice had reduced angular VOR gain in all tested frequencies (0.2–1.5 Hz), and abnormal phase at 0.2 and 0.5 Hz. Concerning horizontal steps, KO mice had reduced responses. Otolithic function was reduced by about a third in KO mice. Static ocular-counter roll gain and OVAR bias were both significantly reduced. These results demonstrate that canal- and otolith-dependent vestibulo-ocular reflexes are impaired in KO mice. Conclusion: The major ampullar disorganization led to an important reduction but not to a complete loss of angular coding capacities. Mildly disorganized otolithic hair cells were associated with a significant loss of otolith-dependent function. These results suggest that the highly organized polarization of otolithic hair cells is a critical factor for the accurate encoding of the head movement and that the loss of a small fraction of the otolithic hair cells in pathological conditions is likely to have major functional consequences. Altogether, these results shed light on how partial loss of vestibular information encoding, as often encountered in pathological situations, translates into functional deficits.
Collapse
Affiliation(s)
- François Simon
- Université de Paris, INCC UMR 8002, CNRS, Paris, France.,Service d'ORL et de Chirurgie Cervico-Faciale Pédiatrique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Fadel Tissir
- Institut de Neuroscience, Université Catholique de Louvain, Brussels, Belgium.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Vincent Michel
- Institut de l'Audition, Institut Pasteur, INSERM, Paris, France
| | - Ghizlene Lahlou
- Institut de l'Audition/Institut Pasteur, Technologies et thérapie génique pour la surdité, Paris, France.,Service d'ORL et de Chirurgie Cervico-Faciale Pédiatrique, APHP, Sorbonne Université, Hôpital Pitié-Salpétrière, Paris, France
| | - Michael Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, United States.,Division of Otolaryngology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | | |
Collapse
|
8
|
Eyries M, Girerd B, Savale L, Soubrier F, Humbert M, Montani D. A CELSR1 variant in a patient with pulmonary arterial hypertension. Clin Genet 2021; 100:771-772. [PMID: 34435352 DOI: 10.1111/cge.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Mélanie Eyries
- Sorbonne Université, AP-HP, Département de Génétique, INSERM UMR_S1166, Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Barbara Girerd
- Department of Respiratory and Intensive Care Medicine, Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Department of Respiratory and Intensive Care Medicine, Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Florent Soubrier
- Sorbonne Université, AP-HP, Département de Génétique, INSERM UMR_S1166, Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Marc Humbert
- Department of Respiratory and Intensive Care Medicine, Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - David Montani
- Department of Respiratory and Intensive Care Medicine, Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Pulmonary Hypertension National Referral Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Xia S, Liu Z, Yan H, Chang K, Sun Y, Wang J, Shen W. Lymphedema complicated by protein-losing enteropathy with a 22q13.3 deletion and the potential role of CELSR1: A case report. Medicine (Baltimore) 2021; 100:e26307. [PMID: 34128868 PMCID: PMC8213278 DOI: 10.1097/md.0000000000026307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION 22q13.3 deletion syndrome is a well-known syndrome characterized by typical clinical findings including neonatal hypotonia, absent or severely delayed speech, intellectual disability, and other various features, and detection of a heterozygous deletion of chromosome 22q13.3 with the involvement of at least part of SHANK3. It is reported that 10% to 29% of patients with 22q13.3 deletion syndrome present lymphedema. Protein-losing enteropathy (PLE) has never been reported in 22q13.3 deletion syndrome. PATIENT CONCERNS The patient presented to our institution for refractory hypoalbuminemia and chronic lymphedema in both legs. DIAGNOSIS The patient manifested intellectual disability, absent speech, tooth grinding, dysmorphic face, and abnormal hands and toenails. Copy-number variation sequencing confirmed the maternal deletion in 22q13.31-q13.33 (chr22:46285592-51244566, hg19). The patient was genetically diagnosed with 22q13.3 deletion syndrome. INTERVENTIONS Low-fat diets and medium-chain triglycerides supplements were prescribed. The patient was recommended to wear compression garments and elevate legs. OUTCOMES The symptom of diarrhea was resolved, but hypoalbuminemia persisted. Lower extremities lymphedema was gradually becoming severe. CONCLUSIONS Primary lymphedema and PLE can occur simultaneously in a patient with 22q13.3 deletion syndrome. The 2 phenotypes could share the same genetic etiology of congenital lymphatic abnormalities. CELSR1 deletion may play a role in lymphatic dysplasia. The case also provides additional proof of the pathogenic effect of CELSR1 on hereditary lymphedema.
Collapse
Affiliation(s)
- Song Xia
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University
| | - Zhong Liu
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University
| | - Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kun Chang
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University
| | - Yuguang Sun
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wenbin Shen
- Department of Lymphatic Surgery, Beijing Shijitan Hospital, Capital Medical University
| |
Collapse
|
10
|
Transcriptome analysis provides new molecular signatures in sporadic Cerebral Cavernous Malformation endothelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165956. [PMID: 32877751 DOI: 10.1016/j.bbadis.2020.165956] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023]
Abstract
Cerebral cavernous malformations (CCM) are lesions affecting brain capillaries that appear with a mulberry-like morphology. This shape results from the enlarged and tangled microvessels having defective endothelial cell junctions, few surrounding pericytes and dense extracellular collagen-rich matrix. Three genes KRIT1, CCM2 and PDCD10 are linked to disease onset. However, a variable percentage of patients harbour no mutations at these loci, encouraging hypothesis of further genetic factors involved in CCM pathogenesis. Here we present data obtained by transcriptome analysis on endothelial cells isolated by CCM specimens, with the aim to identify dysregulated pathways involved in lesion onset. Lesions belonged to two patients carried neither germline nor somatic mutations at the three CCM genes. By comparison with Human brain microvascular endothelial cells (HBMECs) expression profile, we identified 1325 differentially expressed genes (Bonferroni pValue <0.05) common for the two samples. Functional enrichment analysis clustered these genes in 80 terms related to neuroinflammation, extra-cellular matrix remodelling, cell junction impairment, reactive oxygen species metabolism. In addition, CCM genes expression values resulted slightly altered in only one of the two CCM endothelial cell samples when compared to HBMECs, suggesting as further genetic factors can contribute to CCM development. Following expression analysis, we suggests that the molecular shift from canonical to non-canonical Wnt pathway might be a key event in CCM pathogenesis. Moreover, our results provide novel potential genetic targets to investigate for the development of more selective therapies.
Collapse
|
11
|
MiR-629-5p promotes the invasion of lung adenocarcinoma via increasing both tumor cell invasion and endothelial cell permeability. Oncogene 2020; 39:3473-3488. [PMID: 32108166 DOI: 10.1038/s41388-020-1228-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Tumor invasion underlies further metastasis, the leading cause for cancer-related deaths. Deregulation of microRNAs has been identified associated with the malignant behavior of various cancers, including lung adenocarcinoma (LUAD), the major subtype of lung cancer. Here, we showed the significantly positive correlation between miR-629-5p level and tumor invasion in LUAD specimens (n = 49). In a human LUAD metastasis mouse model, H1650 cells (high level of miR-629-5p) were more aggressive than A549 cells (low level of miR-629-5p) in vivo, including higher incidence of vascular invasion and pulmonary colonization. Ectopic expression of miR-629-5p in A549 cells also increased their invasive capability. Then we identified that miR-629-5p promotes LUAD invasion in a mode of dual regulation via tumor cells invasion and endothelial cells permeability, respectively. In tumor cells, miR-629-5p enhanced motility and invasiveness of tumor cells by directly targeting PPWD1 (a cyclophilin), which clinically related to tumor invasion in LUAD specimens. Restoring PPWD1 protein significantly attenuated the invasion-promoting effects of miR-629-5p. Besides, exosomal-miR-629-5p secreted from tumor cells could be transferred to endothelial cells and increased endothelial monolayers permeability by suppressing CELSR1 (a nonclassic-type cadherin), which had a low level in the endothelial cells of invasive LUAD specimens. Activating the expression of CELSR1 in endothelial cells markedly blocked the effect of miR-629-5p. Our study suggests the dual roles of miR-629-5p in tumor cells and endothelial cells for LUAD invasion, implying a therapeutic option to targeting miR-629-5p using the "one stone, two birds" strategy in LUAD.
Collapse
|
12
|
Wang LH, Zhang GL, Liu XY, Peng A, Ren HY, Huang SH, Liu T, Wang XJ. CELSR1 Promotes Neuroprotection in Cerebral Ischemic Injury Mainly Through the Wnt/PKC Signaling Pathway. Int J Mol Sci 2020; 21:E1267. [PMID: 32070035 PMCID: PMC7072880 DOI: 10.3390/ijms21041267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/26/2023] Open
Abstract
Cadherin epidermal growth factor (EGF) laminin G (LAG) seven-pass G-type receptor 1 (CELSR1) is a member of a special subgroup of adhesion G protein-coupled receptors. Although Celsr1 has been reported to be a sensitive gene for stroke, the effect of CELSR1 in ischemic stroke is still not known. Here, we investigated the effect of CELSR1 on neuroprotection, neurogenesis and angiogenesis in middle cerebral artery occlusion (MCAO) rats. The mRNA expression of Celsr1 was upregulated in the subventricular zone (SVZ), hippocampus and ischemic penumbra after cerebral ischemic injury. Knocking down the expression of Celsr1 in the SVZ with a lentivirus significantly reduced the proliferation of neuroblasts, the number of CD31-positive cells, motor function and rat survival and increased cell apoptosis and the infarct volume in MCAO rats. In addition, the expression of p-PKC in the SVZ and peri-infarct tissue was downregulated after ischemia/ reperfusion. Meanwhile, in the dentate gyrus of the hippocampus, knocking down the expression of Celsr1 significantly reduced the proliferation of neuroblasts; however, it had no influence on motor function, cell apoptosis or angiogenesis. These data indicate that CELSR1 has a neuroprotective effect on cerebral ischemia injury by reducing cell apoptosis in the peri-infarct cerebral cortex and promoting neurogenesis and angiogenesis, mainly through the Wnt/PKC pathway.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Geng-Lin Zhang
- Key Laboratory for Biotech-Drugs Ministry of Health and Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China;
| | - Xing-Yu Liu
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Ai Peng
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Hai-Yuan Ren
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Shu-Hong Huang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China;
| | - Ting Liu
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
| | - Xiao-Jing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, Shandong, China; (L.-H.W.); (X.-Y.L.); (A.P.); (H.-Y.R.); (T.L.)
- Advanced Medical Research Institute, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
13
|
Erickson RP, Lai L, Mustacich DJ, Bernas MJ, Kuo PH, Witte MH. Sex‐limited penetrance of lymphedema to females with
CELSR1
haploinsufficiency: A second family. Clin Genet 2019; 96:478-482. [DOI: 10.1111/cge.13622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Robert P. Erickson
- Department of PediatricsUniversity of Arizona College of Medicine Tucson Arizona
| | - Li‐Wen Lai
- Department of PathologyUniversity of Arizona College of Medicine Tucson Arizona
| | - Debbie J. Mustacich
- Department of SurgeryUniversity of Arizona College of Medicine Tucson Arizona
| | - Michael J. Bernas
- Department of SurgeryUniversity of Arizona College of Medicine Tucson Arizona
| | - Phillip H. Kuo
- Department of Medical Imaging (Nuclear Medicine)University of Arizona College of Medicine Tucson Arizona
| | - Marlys H. Witte
- Department of SurgeryUniversity of Arizona College of Medicine Tucson Arizona
| |
Collapse
|