1
|
Chen YY, Soma Y, Ishikawa M, Takahashi M, Izumi Y, Bamba T, Hori K. Metabolic alteration of Methylococcus capsulatus str. Bath during a microbial gas-phase reaction. BIORESOURCE TECHNOLOGY 2021; 330:125002. [PMID: 33770731 DOI: 10.1016/j.biortech.2021.125002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
This study demonstrates the metabolic alteration of Methylococcus capsulatus (Bath), a representative bacterium among methanotrophs, in microbial gas-phase reactions. For comparative metabolome analysis, a bioreactor was designed to be capable of supplying gaseous substrates and liquid nutrients continuously. Methane degradation by M. capsulatus (Bath) was more efficient in a gas-phase reaction operated in the bioreactor than in an aqueous phase reaction operated in a batch reactor. Metabolome analysis revealed remarkable alterations in the metabolism of cells in the gas-phase reaction; in particular, pyruvate, 2-ketoglutarate, some amino acids, xanthine, and hypoxanthine were accumulated, whereas 2,6-diaminopimelate was decreased. Based on the results of metabolome analysis, cells in the gas-phase reaction seemed to alter their metabolism to reduce the excess ATP and NADH generated upon increased availability of methane and oxygen. Our findings will facilitate the development of efficient processes for methane-based bioproduction with low energy consumption.
Collapse
Affiliation(s)
- Yan-Yu Chen
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Soma
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
2
|
Miranda-Molina A, Xolalpa W, Strompen S, Arreola-Barroso R, Olvera L, López-Munguía A, Castillo E, Saab-Rincon G. Deep Eutectic Solvents as New Reaction Media to Produce Alkyl-Glycosides Using Alpha-Amylase from Thermotoga maritima. Int J Mol Sci 2019; 20:ijms20215439. [PMID: 31683666 PMCID: PMC6862209 DOI: 10.3390/ijms20215439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/20/2023] Open
Abstract
Deep Eutectic Solvents (DES) were investigated as new reaction media for the synthesis of alkyl glycosides catalyzed by the thermostable α-amylase from Thermotoga maritima Amy A. The enzyme was almost completely deactivated when assayed in a series of pure DES, but as cosolvents, DES containing alcohols, sugars, and amides as hydrogen-bond donors (HBD) performed best. A choline chloride:urea based DES was further characterized for the alcoholysis reaction using methanol as a nucleophile. As a cosolvent, this DES increased the hydrolytic and alcoholytic activity of the enzyme at low methanol concentrations, even when both activities drastically dropped when methanol concentration was increased. To explain this phenomenon, variable-temperature, circular dichroism characterization of the protein was conducted, finding that above 60 °C, Amy A underwent large conformational changes not observed in aqueous medium. Thus, 60 °C was set as the temperature limit to carry out alcoholysis reactions. Higher DES contents at this temperature had a detrimental but differential effect on hydrolysis and alcoholysis reactions, thus increasing the alcoholyisis/hydrolysis ratio. To the best of our knowledge, this is the first report on the effect of DES and temperature on an enzyme in which structural studies made it possible to establish the temperature limit for a thermostable enzyme in DES.
Collapse
Affiliation(s)
- Alfonso Miranda-Molina
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Wendy Xolalpa
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Simon Strompen
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Rodrigo Arreola-Barroso
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Leticia Olvera
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Agustín López-Munguía
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Edmundo Castillo
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Gloria Saab-Rincon
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| |
Collapse
|
3
|
Vitola G, Mazzei R, Poerio T, Barbieri G, Fontananova E, Büning D, Ulbricht M, Giorno L. Influence of Lipase Immobilization Mode on Ethyl Acetate Hydrolysis in a Continuous Solid–Gas Biocatalytic Membrane Reactor. Bioconjug Chem 2019; 30:2238-2246. [DOI: 10.1021/acs.bioconjchem.9b00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Giuseppe Vitola
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy
| | - Rosalinda Mazzei
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy
| | - Teresa Poerio
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy
| | - Giuseppe Barbieri
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy
| | - Enrica Fontananova
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy
| | - Dominic Büning
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Lidietta Giorno
- Institute on Membrane Technology, National Research Council, ITM-CNR, via P. Bucci, 17/C, I-87030 Rende, Cosenza, Italy
| |
Collapse
|
4
|
Analysis of Mass Transport through Anisotropic, Catalytic/Bio-Catalytic Membrane Reactors. Catalysts 2019. [DOI: 10.3390/catal9040358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This paper investigated the steady-state mass transport process through anisotropic, composite membrane layers with variable mass transport coefficients, such as the diffusion coefficient, convective velocity, or chemical/biochemical reaction rate constant. The transfer processes can be a solution-diffusion model or diffusive plus convective process. In the theoretical part, the concentration distribution as well as the inlet and outlet mass transfer rates’ expressions are defined for physical transport processes with variable diffusion or solubility coefficients and then that for transport processes accompanied by first- and zero-order reactions, in the presence of diffusive and convective flow, with constant and variable parameters. The variation of the transport parameters as a function of the local coordinate was defined by linear equations. It was shown that the increasing diffusion coefficient or convective flow induces much lower concentrations across the membrane layer than transport processes, with their decreasing values a function of the space coordinate. Accordingly, this can strongly affect the effect of the concentration dependent chemical/biochemical reaction. The inlet mass transfer rate can also be mostly higher when the transport parameter decreases across the anisotropic membrane layer.
Collapse
|