1
|
Molugu K, Khajanchi N, Lazzarotto CR, Tsai SQ, Saha K. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells. CRISPR J 2023; 6:473-485. [PMID: 37676985 PMCID: PMC10611976 DOI: 10.1089/crispr.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 09/09/2023] Open
Abstract
Genome-edited human-induced pluripotent stem cells (iPSCs) have broad applications in disease modeling, drug discovery, and regenerative medicine. Despite the development of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, the gene editing process is inefficient and can take several weeks to months to generate edited iPSC clones. We developed a strategy to improve the efficiency of the iPSC gene editing process via application of a small-molecule, trichostatin A (TSA), a Class I and II histone deacetylase inhibitor. We observed that TSA decreased global chromatin condensation and further resulted in increased gene-editing efficiency of iPSCs by twofold to fourfold while concurrently ensuring no increased off-target effects. The edited iPSCs could be clonally expanded while maintaining genomic integrity and pluripotency. The rapid generation of therapeutically relevant gene-edited iPSCs could be enabled by these findings.
Collapse
Affiliation(s)
- Kaivalya Molugu
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Namita Khajanchi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cicera R. Lazzarotto
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA; St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Biomedical and Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
De Masi C, Spitalieri P, Murdocca M, Novelli G, Sangiuolo F. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. Hum Genomics 2020; 14:25. [PMID: 32591003 PMCID: PMC7318728 DOI: 10.1186/s40246-020-00276-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) and CRISPR/Cas9 gene editing system represent two instruments of basic and translational research, which both allow to acquire deep insight about the molecular bases of many diseases but also to develop pharmacological research.This review is focused to draw up the latest technique of gene editing applied on hiPSCs, exploiting some of the genetic manipulation directed to the discovery of innovative therapeutic strategies. There are many expediencies provided by the use of hiPSCs, which can represent a disease model clinically relevant and predictive, with a great potential if associated to CRISPR/Cas9 technology, a gene editing tool powered by ease and precision never seen before.Here, we describe the possible applications of CRISPR/Cas9 to hiPSCs: from drug development to drug screening and from gene therapy to the induction of the immunological response to specific virus infection, such as HIV and SARS-Cov-2.
Collapse
Affiliation(s)
- Claudia De Masi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|