1
|
Barzilai DA. Mikhail 'Misha' Blagosklonny's enduring legacy in geroscience: the hyperfunction theory and the therapeutic potential of rapamycin. Aging (Albany NY) 2025; null:206189. [PMID: 39808121 DOI: 10.18632/aging.206189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The untimely passing of Dr. Mikhail "Misha" Blagosklonny has left a lasting void in geroscience and oncology. This review examines his profound contributions, focusing on his pioneering the Hyperfunction Theory and his advocacy for rapamycin, an mTOR inhibitor, as a therapeutic agent for lifespan extension. Contrary to traditional damage-centric models, the Hyperfunction Theory rejects damage accumulation as the primary driver of aging. Instead, it redefines aging as a quasi-programmed process driven by the persistent, excessive activity of growth-promoting pathways beyond their developmental roles, leading to age-related pathologies. We explore how Blagosklonny's insights predict rapamycin's ability to decelerate aging by modulating excessive mTOR signaling, supported by empirical evidence across multiple physiological systems, including immune, cardiovascular, cognitive, and oncologic health. His forward-thinking approach, advocating for the cautious clinical use of rapamycin and suggesting personalized, preventive, and combination therapy strategies, has catalyzed interest in translational geroscience. This review synthesizes Blagosklonny's legacy, presenting rapamycin as a foundational pharmacological intervention with potential in managing age-related decline and extending healthspan, and underlines his impact in shifting aging research from theoretical frameworks to actionable interventions. Blagosklonny's work remains an enduring inspiration, paving the way toward treating aging as a modifiable condition.
Collapse
Affiliation(s)
- David A Barzilai
- Geneva College of Longevity Science, Geneva 1204, Switzerland
- Healthspan Coaching LLC, Barzilai Longevity Consulting, Boston, MA 02111, USA
| |
Collapse
|
2
|
Gems D, Kern CC. Biological constraint, evolutionary spandrels and antagonistic pleiotropy. Ageing Res Rev 2024; 101:102527. [PMID: 39374830 DOI: 10.1016/j.arr.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Maximum lifespan differs greatly between species, indicating that the process of senescence is largely genetically determined. Senescence evolves in part due to antagonistic pleiotropy (AP), where selection favors gene variants that increase fitness earlier in life but promote pathology later. Identifying the biological mechanisms by which AP causes senescence is key to understanding the endogenous causes of aging and its attendant diseases. Here we argue that the frequent occurrence of AP as a property of genes reflects the presence of constraint in the biological systems that they specify. This arises particularly because the functionally interconnected nature of biological systems constrains the simultaneous optimization of coupled traits (interconnection constraints), or because individual traits cannot evolve (impossibility constraints). We present an account of aging that integrates AP and biological constraint with recent programmatic aging concepts, including costly programs, quasi-programs, hyperfunction and hypofunction. We argue that AP mechanisms of costly programs and triggered quasi-programs are consequences of constraint, in which costs resulting from hyperfunction or hypofunction cause senescent pathology. Impossibility constraint can also cause hypofunction independently of AP. We also describe how AP corresponds to Stephen Jay Gould's constraint-based concept of evolutionary spandrels, and argue that pathologies arising from AP are bad spandrels. Biological constraint is a conceptual missing link between ultimate and proximate causes of senescence, including diseases of aging.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.
| | - Carina C Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
4
|
Chapman H, Hsiung KC, Rawlinson I, Galimov ER, Gems D. Colony level fitness analysis identifies a trade-off between population growth rate and dauer yield in Caenorhabditis elegans. BMC Ecol Evol 2024; 24:13. [PMID: 38267842 PMCID: PMC10809635 DOI: 10.1186/s12862-024-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In the evolution from unicellular to multicellular life forms, natural selection favored reduced cell proliferation and even programmed cell death if this increased organismal fitness. Could reduced individual fertility or even programmed organismal death similarly increase the fitness of colonies of closely-related metazoan organisms? This possibility is at least consistent with evolutionary theory, and has been supported by computer modelling. Caenorhabditis elegans has a boom and bust life history, where populations of nematodes that are sometimes near clonal subsist on and consume food patches, and then generate dauer larva dispersal propagules. A recent study of an in silico model of C. elegans predicted that one determinant of colony fitness (measured as dauer yield) is minimization of futile food consumption (i.e. that which does not contribute to dauer yield). One way to achieve this is to optimize colony population structure by adjustment of individual fertility. RESULTS Here we describe development of a C. elegans colony fitness assay, and its use to investigate the effect of altering population structure on colony fitness after population bust. Fitness metrics measured were speed of dauer production, and dauer yield, an indirect measure of efficiency of resource utilization (i.e. conversion of food into dauers). We find that with increasing founder number, speed of dauer production increases (due to earlier bust) but dauer yield rises and falls. In addition, some dauer recovery was detected soon after the post-colony bust peak of dauer yield, suggesting possible bet hedging among dauers. CONCLUSIONS These results suggest the presence of a fitness trade-off at colony level between speed and efficiency of resource utilization in C. elegans. They also provide indirect evidence that population structure is a determinant of colony level fitness, potentially by affecting level of futile food consumption.
Collapse
Affiliation(s)
- Hannah Chapman
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Isadora Rawlinson
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Evgeniy R Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
Wang ZY. Octopus death and dying. Integr Comp Biol 2023; 63:1209-1213. [PMID: 37437909 DOI: 10.1093/icb/icad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Affiliation(s)
- Z Yan Wang
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Wang C, Long Y, Wang B, Zhang C, Ma DK. GPCR signaling regulates severe stress-induced organismic death in Caenorhabditis elegans. Aging Cell 2023; 22:e13735. [PMID: 36415159 PMCID: PMC9835589 DOI: 10.1111/acel.13735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
How an organism dies is a fundamental yet poorly understood question in biology. An organism can die of many causes, including stress-induced phenoptosis, also defined as organismic death that is regulated by its genome-encoded programs. The mechanism of stress-induced phenoptosis is still largely unknown. Here, we show that transient but severe freezing-thaw stress (FTS) in Caenorhabditis elegans induces rapid and robust phenoptosis that is regulated by G-protein coupled receptor (GPCR) signaling. RNAi screens identify the GPCR-encoding fshr-1 in mediating transcriptional responses to FTS. FSHR-1 increases ligand interaction upon FTS and activates a cyclic AMP-PKA cascade leading to a genetic program to promote organismic death under severe stress. FSHR-1/GPCR signaling up-regulates the bZIP-type transcription factor ZIP-10, linking FTS to expression of genes involved in lipid remodeling, proteostasis, and aging. A mathematical model suggests how genes may promote organismic death under severe stress conditions, potentially benefiting growth of the clonal population with individuals less stressed and more reproductively privileged. Our studies reveal the roles of FSHR-1/GPCR-mediated signaling in stress-induced gene expression and phenoptosis in C. elegans, providing empirical new insights into mechanisms of stress-induced phenoptosis with evolutionary implications.
Collapse
Affiliation(s)
- Changnan Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanChina
| | - Bingying Wang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Chao Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
7
|
Lidsky PV, Yuan J, Rulison JM, Andino-Pavlovsky R. Is Aging an Inevitable Characteristic of Organic Life or an Evolutionary Adaptation? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1413-1445. [PMID: 36717438 PMCID: PMC9839256 DOI: 10.1134/s0006297922120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
Aging is an evolutionary paradox. Several hypotheses have been proposed to explain it, but none fully explains all the biochemical and ecologic data accumulated over decades of research. We suggest that senescence is a primitive immune strategy which acts to protect an individual's kin from chronic infections. Older organisms are exposed to pathogens for a longer period of time and have a higher likelihood of acquiring infectious diseases. Accordingly, the parasitic load in aged individuals is higher than in younger ones. Given that the probability of pathogen transmission is higher within the kin, the inclusive fitness cost of infection might exceed the benefit of living longer. In this case, programmed lifespan termination might be an evolutionarily stable strategy. Here, we discuss the classical evolutionary hypotheses of aging and compare them with the pathogen control hypothesis, discuss the consistency of these hypotheses with existing empirical data, and present a revised conceptual framework to understand the evolution of aging.
Collapse
Affiliation(s)
- Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| | - Jing Yuan
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
| | - Jacob M Rulison
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
- University of California Berkeley, CA, USA
| | - Raul Andino-Pavlovsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| |
Collapse
|
8
|
Pandey T, Ma DK. Stress-Induced Phenoptosis: Mechanistic Insights and Evolutionary Implications. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1504-1511. [PMID: 36717459 DOI: 10.1134/s0006297922120082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Evolution by natural selection results in biological traits that enable organismic adaptation and survival under various stressful environments. External stresses can be sometimes too severe to overcome, leading to organismic death either because of failure in adapting to such stress, or alternatively, through a regulated form of organismic death (phenoptosis). While regulated cell deaths, including apoptosis, have been extensively studied, little is known about the molecular and cellular mechanisms underlying phenoptosis and its evolutionary significance for multicellular organisms. In this article, we review documented phenomena and mechanistic evidence emerging from studies of stress-induced phenoptosis in the multicellular organism C. elegans and stress-induced deaths at cellular levels in organisms ranging from bacteria to mammals, focusing on abiotic and pathogen stresses. Genes and signaling pathways involved in phenoptosis appear to promote organismic death during severe stress and aging, while conferring fitness and immune defense during mild stress and early life, consistent with their antagonistic pleiotropy actions. As cell apoptosis during development can shape tissues and organs, stress-induced phenoptosis may also contribute to possible benefits at the population level, through mechanisms including kin selection, abortive infection, and soma-to-germline resource allocation. Current models can generate experimentally testable predictions and conceptual frameworks with implications for understanding both stress-induced phenoptosis and natural aging.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA.
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA. .,Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
9
|
Gems D, Kern CC. Is "cellular senescence" a misnomer? GeroScience 2022; 44:2461-2469. [PMID: 36068483 PMCID: PMC9768054 DOI: 10.1007/s11357-022-00652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| | - Carina C. Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
10
|
Kern CC, Gems D. Semelparous Death as one Element of Iteroparous Aging Gone Large. Front Genet 2022; 13:880343. [PMID: 35754809 PMCID: PMC9218716 DOI: 10.3389/fgene.2022.880343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging.
Collapse
Affiliation(s)
- Carina C Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
11
|
Shilovsky GA, Putyatina TS, Markov AV. Altruism and Phenoptosis as Programs Supported by Evolution. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1540-1552. [PMID: 34937533 PMCID: PMC8678581 DOI: 10.1134/s0006297921120038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phenoptosis is a programmed death that has emerged in the process of evolution, sometimes taking the form of an altruistic program. In particular, it is believed to be a weapon against the spread of pandemics in the past and an obstacle in fighting pandemics in the present (COVID). However, on the evolutionary scale, deterministic death is not associated with random relationships (for example, bacteria with a particular mutation), but is a product of higher nervous activity or a consequence of established hierarchy that reaches its maximal expression in eusocial communities of Hymenoptera and highly social communities of mammals. Unlike a simple association of individuals, eusociality is characterized by the appearance of non-reproductive individuals as the highest form of altruism. In contrast to primitive programs for unicellular organisms, higher multicellular organisms are characterized by the development of behavior-based phenoptotic programs, especially in the case of reproduction-associated limitation of lifespan. Therefore, we can say that the development of altruism in the course of evolution of sociality leads in its extreme manifestation to phenoptosis. Development of mathematical models for the emergence of altruism and programmed death contributes to our understanding of mechanisms underlying these paradoxical counterproductive (harmful) programs. In theory, this model can be applied not only to insects, but also to other social animals and even to the human society. Adaptive death is an extreme form of altruism. We consider altruism and programmed death as programmed processes in the mechanistic and adaptive sense, respectively. Mechanistically, this is a program existing as a predetermined chain of certain responses, regardless of its adaptive value. As to its adaptive value (regardless of the degree of "phenoptoticity"), this is a characteristic of organisms that demonstrate high levels of kinship, social organization, and physical association typical for higher-order individuals, e.g., unicellular organisms forming colonies with some characteristics of multicellular animals or colonies of multicellular animals displaying features of supraorganisms.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
12
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
13
|
Atwa SM, Odenthal M, El Tayebi HM. Genetic Heterogeneity, Therapeutic Hurdle Confronting Sorafenib and Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:4343. [PMID: 34503153 PMCID: PMC8430643 DOI: 10.3390/cancers13174343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the latest advances in hepatocellular carcinoma (HCC) screening and treatment modalities, HCC is still representing a global burden. Most HCC patients present at later stages to an extent that conventional curative options are ineffective. Hence, systemic therapy represented by the tyrosine kinase inhibitor, sorafenib, in the first-line setting is the main treatment modality for advanced-stage HCC. However, in the two groundbreaking phase III clinical trials, the SHARP and Asia-Pacific trials, sorafenib has demonstrated a modest prolongation of overall survival in almost 30% of HCC patients. As HCC develops in an immune-rich milieu, particular attention has been placed on immune checkpoint inhibitors (ICIs) as a novel therapeutic modality for HCC. Yet, HCC therapy is hampered by the resistance to chemotherapeutic drugs and the subsequent tumor recurrence. HCC is characterized by substantial genomic heterogeneity that has an impact on cellular response to the applied therapy. And hence, this review aims at giving an insight into the therapeutic impact and the different mechanisms of resistance to sorafenib and ICIs as well as, discussing the genomic heterogeneity associated with such mechanisms.
Collapse
Affiliation(s)
- Sara M. Atwa
- Pharmaceutical Biology Department, German University in Cairo, Cairo 11865, Egypt;
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Margarete Odenthal
- Institute for Pathology, University Hospital Cologne, 50924 Cologne, Germany;
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
14
|
Shilovsky GA, Putyatina TS, Morgunova GV, Seliverstov AV, Ashapkin VV, Sorokina EV, Markov AV, Skulachev VP. A Crosstalk between the Biorhythms and Gatekeepers of Longevity: Dual Role of Glycogen Synthase Kinase-3. BIOCHEMISTRY (MOSCOW) 2021; 86:433-448. [PMID: 33941065 PMCID: PMC8033555 DOI: 10.1134/s0006297921040052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses genetic and molecular pathways that link circadian timing with metabolism, resulting in the emergence of positive and negative regulatory feedback loops. The Nrf2 pathway is believed to be a component of the anti-aging program responsible for the healthspan and longevity. Nrf2 enables stress adaptation by activating cell antioxidant defense and other metabolic processes via control of expression of over 200 target genes in response to various types of stress. The GSK3 system represents a “regulating valve” that controls fine oscillations in the Nrf2 level, unlike Keap1, which prevents significant changes in the Nrf2 content in the absence of oxidative stress and which is inactivated by the oxidative stress. Furthermore, GSK3 modifies core circadian clock proteins (Bmal1, Clock, Per, Cry, and Rev-erbα). Phosphorylation by GSK3 leads to the inactivation and degradation of circadian rhythm-activating proteins (Bmal1 and Clock) and vice versa to the activation and nuclear translocation of proteins suppressing circadian rhythms (Per and Rev-erbα) with the exception of Cry protein, which is likely to be implicated in the fine tuning of biological clock. Functionally, GSK3 appears to be one of the hubs in the cross-regulation of circadian rhythms and antioxidant defense. Here, we present the data on the crosstalk between the most powerful cell antioxidant mechanism, the Nrf2 system, and the biorhythm-regulating system in mammals, including the impact of GSK3 overexpression and knockout on the Nrf2 signaling. Understanding the interactions between the regulatory cascades linking homeostasis maintenance and cell response to oxidative stress will help in elucidating molecular mechanisms that underlie aging and longevity.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Galina V Morgunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Seliverstov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
15
|
Heinze J, Giehr J. The plasticity of lifespan in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190734. [PMID: 33678025 PMCID: PMC7938164 DOI: 10.1098/rstb.2019.0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
Abstract
One of the central questions of ageing research is why lifespans of organisms differ so tremendously among related taxa and, even more surprising, among members of the same species. Social insects provide a particularly pronounced example for this. Here, we review previously published information on lifespan plasticity in social insects and provide new data on worker lifespan in the ant Cardiocondyla obscurior, which because of its relatively short lifespan is a convenient model to study ageing. We show that individual lifespan may vary within species with several reproductive and social traits, such as egg-laying rate, queen number, task, colony size and colony composition. For example, in Cardiocondyla, highly fecund queens live longer than reproductively less active queens, and workers tend to live longer when transferred into a novel social environment or, as we show with new data, into small colonies. We hypothesize that this plasticity of lifespan serves to maximize the reproductive output of the colony as a whole and thus the inclusive fitness of all individuals. The underlying mechanisms that link the social environment or reproductive status with lifespan are currently unresolved. Several studies in honeybees and ants indicate an involvement of nutrient-sensing pathways, but the details appear to differ among species. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| | - Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| |
Collapse
|
16
|
Galimov ER, Gems D. Death happy: adaptive ageing and its evolution by kin selection in organisms with colonial ecology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190730. [PMID: 33678027 DOI: 10.1098/rstb.2019.0730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Standard evolutionary theory, supported by mathematical modelling of outbred, dispersed populations predicts that ageing is not an adaptation. We recently argued that in clonal, viscous populations, programmed organismal death could promote fitness through social benefits and has, in some organisms (e.g. Caenorhabditis elegans), evolved to shorten lifespan. Here, we review previous adaptive death theory, including consumer sacrifice, biomass sacrifice and defensive sacrifice types of altruistic adaptive death. In addition, we discuss possible adaptive death in certain semelparous fish, coevolution of reproductive and adaptive death, and adaptive reproductive senescence in C. elegans. We also describe findings from recent tests for the existence of adaptive death in C. elegans using computer modelling. Such models have provided new insights into how trade-offs between fitness at the individual and colony levels mean that senescent changes can be selected traits. Exploring further the relationship between adaptive death and social interactions, we consider examples where adaptive death results more from action of kin than from self-destructive mechanisms and, to describe this, introduce the term adaptive killing of kin. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Evgeniy R Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
17
|
Bulterijs S, Braeckman BP. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel) 2020; 13:E164. [PMID: 32722365 PMCID: PMC7463874 DOI: 10.3390/ph13080164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Population aging is one of the largest challenges of the 21st century. As more people live to advanced ages, the prevalence of age-related diseases and disabilities will increase placing an ever larger burden on our healthcare system. A potential solution to this conundrum is to develop treatments that prevent, delay or reduce the severity of age-related diseases by decreasing the rate of the aging process. This ambition has been accomplished in model organisms through dietary, genetic and pharmacological interventions. The pharmacological approaches hold the greatest opportunity for successful translation to the clinic. The discovery of such pharmacological interventions in aging requires high-throughput screening strategies. However, the majority of screens performed for geroprotective drugs in C. elegans so far are rather low throughput. Therefore, the development of high-throughput screening strategies is of utmost importance.
Collapse
Affiliation(s)
- Sven Bulterijs
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
18
|
Li Z, Cheng Y, Wu F, Wu L, Cao H, Wang Q, Tang W. The emerging landscape of circular RNAs in immunity: breakthroughs and challenges. Biomark Res 2020; 8:25. [PMID: 32665846 PMCID: PMC7348111 DOI: 10.1186/s40364-020-00204-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently linked RNAs that exhibit individual strand with a closed-loop framework compared with a conserving, steady and abundant linear counterpart. In recent years, as high-throughput sequencing advancement has been developing, functional circRNAs have been increasingly recognized, and more extensive analyses expounded their effect on different diseases. However, the study on the function of circRNAs in the immune system remains insufficient. This study discusses the basic principles of circRNAs regulation and the systems involved in physiology-related and pathology-related processes. The effect of circRNAs on immune regulation is elucidated. The ongoing development of circRNAs and basic immunology has multiplied their potential in treating diseases. Such perspective will summarize the status and effect of circRNAs on various immune cells in cancer, autoimmune diseases and infections. Moreover, this study will primarily expound the system of circRNAs in T lymphocytes, macrophages and other immune cells, which creates a novel perspective and lay a theoretical basis for treating diseases.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| |
Collapse
|
19
|
The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects. Signal Transduct Target Ther 2020; 5:87. [PMID: 32532960 PMCID: PMC7292831 DOI: 10.1038/s41392-020-0187-x] [Citation(s) in RCA: 567] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Collapse
|
20
|
Galimov ER, Gems D. Shorter life and reduced fecundity can increase colony fitness in virtual Caenorhabditis elegans. Aging Cell 2020; 19:e13141. [PMID: 32301222 PMCID: PMC7253062 DOI: 10.1111/acel.13141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 01/23/2023] Open
Abstract
In the nematode Caenorhabditis elegans, loss of function of many genes leads to increases in lifespan, sometimes of a very large magnitude. Could this reflect the occurrence of programmed death that, like apoptosis of cells, promotes fitness? The notion that programmed death evolves as a mechanism to remove worn out, old individuals in order to increase food availability for kin is not supported by classic evolutionary theory for most species. However, it may apply in organisms with colonies of closely related individuals such as C. elegans in which largely clonal populations subsist on spatially limited food patches. Here, we ask whether food competition between nonreproductive adults and their clonal progeny could favor programmed death by using an in silico model of C. elegans. Colony fitness was estimated as yield of dauer larva propagules from a limited food patch. Simulations showed that not only shorter lifespan but also shorter reproductive span and reduced adult feeding rate can increase colony fitness, potentially by reducing futile food consumption. Early adult death was particularly beneficial when adult food consumption rate was high. These results imply that programmed, adaptive death could promote colony fitness in C. elegans through a consumer sacrifice mechanism. Thus, C. elegans lifespan may be limited not by aging in the usual sense but rather by apoptosis-like programmed death.
Collapse
Affiliation(s)
- Evgeniy R. Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
21
|
Skulachev VP. Phenoptosis as a Phenomenon Widespread among Many Groups of Living Organisms Including Mammals (Commentary to the Paper by E. R. Galimov, J. N. Lohr, and D. Gems (2019) Biochemistry (Moscow), 84, 1433-1437). BIOCHEMISTRY (MOSCOW) 2020; 84:1438-1441. [PMID: 31870247 DOI: 10.1134/s0006297919120022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Author congratulates David Gems and co-authors on a brilliant discovery - direct proof of acute phenoptosis in the nematode - but argues that the authors underappreciate the significance of their work by suggesting that phenoptosis is a rare natural phenomenon not typically observed in mammals.
Collapse
Affiliation(s)
- V P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
22
|
Skulachev VP, Shilovsky GA, Putyatina TS, Popov NA, Markov AV, Skulachev MV, Sadovnichii VA. Perspectives of Homo sapiens lifespan extension: focus on external or internal resources? Aging (Albany NY) 2020; 12:5566-5584. [PMID: 32229707 PMCID: PMC7138562 DOI: 10.18632/aging.102981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
Homo sapiens and naked mole rats (Heterocephalus glaber) are vivid examples of social mammals that differ from their relatives in particular by an increased lifespan and a large number of neotenic features. An important fact for biogerontology is that the mortality rate of H. glaber (a maximal lifespan of more than 32 years, which is very large for such a small rodent) negligibly grows with age. The same is true for modern people in developed countries below the age of 60. It is important that the juvenilization of traits that separate humans from chimpanzees evolved over thousands of generations and millions of years. Rapid advances in technology resulted in a sharp increase in the life expectancy of human beings during the past 100 years. Currently, the human life expectancy has exceeded 80 years in developed countries. It cannot be excluded that the potential for increasing life expectancy by an improvement in living conditions will be exhausted after a certain period of time. New types of geroprotectors should be developed that protect not only from chronic phenoptosis gradual poisoning of the body with reactive oxygen species (ROS) but also from acute phenoptosis, where strong increase in the level of ROS immediately kills an already aged individual. Geroprotectors might be another anti-aging strategy along with neoteny (a natural physiological phenomenon) and technical progress.
Collapse
Affiliation(s)
- Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikita A Popov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
| | - Maxim V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor A Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|