1
|
Shtykova EV, Dubrovin EV, Ksenofontov AL, Gifer PK, Petoukhov MV, Tokhtar VK, Sapozhnikova IM, Stavrianidi AN, Kordyukova LV, Batishchev OV. Structural Insights into Plant Viruses Revealed by Small-Angle X-ray Scattering and Atomic Force Microscopy. Viruses 2024; 16:427. [PMID: 38543792 PMCID: PMC10975137 DOI: 10.3390/v16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/23/2024] Open
Abstract
The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.
Collapse
Affiliation(s)
- Eleonora V. Shtykova
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Evgeniy V. Dubrovin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Polina K. Gifer
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Maxim V. Petoukhov
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Valeriy K. Tokhtar
- Scientific and Educational Center, Botanical Garden of the National Research University “BelSU”, Belgorod 308033, Russia;
| | - Irina M. Sapozhnikova
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia;
| | - Andrey N. Stavrianidi
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| |
Collapse
|
2
|
Ksenofontov AL, Petoukhov MV, Matveev VV, Fedorova NV, Semenyuk PI, Arutyunyan AM, Manukhova TI, Evtushenko EA, Nikitin NA, Karpova OV, Shtykova EV. Effect of the Coat Protein N-Terminal Domain Structure on the Structure and Physicochemical Properties of Virions of Potato Virus X and Alternanthera Mosaic Virus. BIOCHEMISTRY (MOSCOW) 2023; 88:119-130. [PMID: 37068873 DOI: 10.1134/s0006297923010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (ΔN peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions. The circular dichroism spectra of these viruses differed significantly, and the melting point of PVX virions was 10-12°C higher than that of AltMV virions. Alignment of the existing high-resolution 3D structures of the potexviral CPs showed that the RMSD value between the Cα-atoms was the largest for the N-terminal domains of the two compared models. Based on the computer modeling, the ΔN peptide of the PVX CP is fully disordered. According to the synchrotron small-angle X-ray scattering (SAXS) data, the structure of CPs from the PVX and AltMV virions differ; in particular, the PVX CP has a larger portion of crystalline regions and, therefore, is more ordered. Based on the SAXS data, the diameters of the PVX and AltMV virions and helix parameters in solution were calculated. The influence of the conformation of the PVX CP N-terminal domain and its position relative to the virion surface on the virion structure was investigated. Presumably, an increased thermal stability of PVX virions vs. AltMV is provided by the extended N-terminal domain (ΔN peptide, 28 amino acid residues), which forms additional contacts between the adjacent CP subunits in the PVX virion.
Collapse
Affiliation(s)
- Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir V Matveev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana I Manukhova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Nikolai A Nikitin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Eleonora V Shtykova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, 119333, Russia
| |
Collapse
|
3
|
Bischoff AJ, Harper CC, Williams ER, Francis MB. Characterizing Heterogeneous Mixtures of Assembled States of the Tobacco Mosaic Virus Using Charge Detection Mass Spectrometry. J Am Chem Soc 2022; 144:23368-23378. [PMID: 36525679 PMCID: PMC10395586 DOI: 10.1021/jacs.2c09160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The tobacco mosaic viral capsid protein (TMV) is a frequent target for derivatization for myriad applications, including drug delivery, biosensing, and light harvesting. However, solutions of the stacked disk assembly state of TMV are difficult to characterize quantitatively due to their large size and multiple assembled states. Charge detection mass spectrometry (CDMS) addresses the need to characterize heterogeneous populations of large protein complexes in solution quickly and accurately. Using CDMS, previously unobserved assembly states of TMV, including 16-monomer disks and odd-numbered disk stacks, have been characterized. We additionally employed a peptide-protein conjugation reaction in conjunction with CDMS to demonstrate that modified TMV proteins do not redistribute between disks. Finally, this technique was used to discriminate between protein complexes of near-identical mass but different configurations. We have gained a greater understanding of the behavior of TMV, a protein used across a broad variety of fields and applications, in the solution state.
Collapse
Affiliation(s)
- Amanda J. Bischoff
- College of Chemistry, University of California, Berkeley, California, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, 94720, United States
| | - Conner C. Harper
- College of Chemistry, University of California, Berkeley, California, 94720, United States
| | - Evan R. Williams
- College of Chemistry, University of California, Berkeley, California, 94720, United States
| | - Matthew B. Francis
- College of Chemistry, University of California, Berkeley, California, 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California, 94720, United States
| |
Collapse
|
4
|
Abu-Baker I, Blum AS. Alcohol-perturbed self-assembly of the tobacco mosaic virus coat protein. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:355-362. [PMID: 35425690 PMCID: PMC8978915 DOI: 10.3762/bjnano.13.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The self-assembly of the tobacco mosaic virus coat protein is significantly altered in alcohol-water mixtures. Alcohol cosolvents stabilize the disk aggregate and prevent the formation of helical rods at low pH. A high alcohol content favours stacked disk assemblies and large rafts, while a low alcohol concentration favours individual disks and short stacks. These effects appear to be caused by the hydrophobicity of the alcohol additive, with isopropyl alcohol having the strongest effect and methanol the weakest. We discuss several effects that may contribute to preventing the protein-protein interactions between disks that are necessary to form helical rods.
Collapse
Affiliation(s)
- Ismael Abu-Baker
- Department of Chemistry, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
5
|
Shtykova EV, Petoukhov MV, Fedorova NV, Arutyunyan AM, Skurat EV, Kordyukova LV, Moiseenko AV, Ksenofontov AL. The Structure of the Potato Virus A Particles Elucidated by Small Angle X-Ray Scattering and Complementary Techniques. BIOCHEMISTRY (MOSCOW) 2021; 86:230-240. [PMID: 33832421 DOI: 10.1134/s0006297921020115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Potato virus A (PVA) protein coat contains on its surface partially unstructured N-terminal domain of the viral coat protein (CP), whose structural and functional characteristics are important for understanding the mechanism of plant infection with this virus. In this work, we investigated the properties and the structure of intact PVA and partially trypsinized PVAΔ32 virions using small-angle X-ray scattering (SAXS) and complimentary methods. It was shown that after the removal of 32 N-terminal amino acids of the CP, the virion did not disintegrate and remained compact, but the helical pitch of the CP packing changed. To determine the nature of these changes, we performed ab initio modeling, including the multiphase procedure, with the geometric bodies (helices) and restoration of the PVA structure in solution using available high-resolution structures of the homologous CP from the PVY potyvirus, based on the SAXS data. As a result, for the first time, a low-resolution structure of the filamentous PVA virus, both intact and partially degraded, was elucidated under conditions close to natural. The far-UV circular dichroism spectra of the PVA and PVAΔ32 samples differed significantly in the amplitude and position of the main negative maximum. The extent of thermal denaturation of these samples in the temperature range of 20-55°C was also different. The data of transmission electron microscopy showed that the PVAΔ32 virions were mostly rod-shaped, in contrast to the flexible filamentous particles typical of the intact virus, which correlated well with the SAXS results. In general, structural analysis indicates an importance of the CP N-terminal domain for the vital functions of PVA, which can be used to develop a strategy for combating this plant pathogen.
Collapse
Affiliation(s)
- Eleonora V Shtykova
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, 119333, Russia.
| | - Maxim V Petoukhov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, 119333, Russia
| | - Natalia V Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Eugene V Skurat
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Larisa V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Andrey V Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander L Ksenofontov
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, 119333, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|